Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 2 result(s)
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: - Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. - Highlighting existing resources developed or housed by Penn State. - Supporting access to project/program partners via collaborative map or web services. - Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms. It is used by students, educators, and researchers all over the world as a primary source of machine learning data sets. As an indication of the impact of the archive, it has been cited over 1000 times.