Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 11 result(s)
WDC for STP, Moscow collects, stores, exchanges with other WDCs, disseminates the publications, sends upon requests data on the following Solar-Terrestrial Physics disciplines: Solar Activity and Interplanetary Medium, Cosmic Rays, Ionospheric Phenomena, Geomagnetic Variations.
The UK Solar System Data Centre (UKSSDC) provides a STFC and NERC jointly funded central archive and data centre facility for Solar System science in the UK. The facilities include the World Data Centre for Solar-Terrestrial Physics, Chilton and the Cluster Ground-Based Data Centre. The UKSSDC supports data archives for the whole UK solar system community encompassing solar, inter-planetary, magnetospheric, ionospheric and geomagnetic science. The UKSSDC is part of RAL Space based at the STFC run Rutherford Appleton Laboratory in Oxfordshire.
Country
SIMBAD astronomical database is the world reference database for the identification of astronomical objects and provides basic data, cross-identifications, bibliography and measurements for astronomical objects outside the solar system. Using VizieR, the catalogue service for the CDS reference collection of astronomical catalogues and tables published in academic journals and the Aladin interactive software sky atlas for access, visualization and analysis of astronomical images, surveys, catalogues, databases and related data. Simbad bibliographic survey began in 1950 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system)
Herschel has been designed to observe the `cool universe'; it is observing the structure formation in the early universe, resolving the far infrared cosmic background, revealing cosmologically evolving AGN/starburst symbiosis and galaxy evolution at the epochs when most stars in the universe were formed, unveiling the physics and chemistry of the interstellar medium and its molecular clouds, the wombs of the stars, and unravelling the mechanisms governing the formation of and evolution of stars and their planetary systems, including our own solar system, putting it into context. In short, Herschel is opening a new window to study how the universe has evolved to become the universe we see today, and how our star the sun, our planet the earth, and we ourselves fit in.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.
The WDC has a FTP-server to distribute the PCN index derived from the geomagnetic observatory Qaanaaq (THL) and the Kp-index data products derived at the geomagnetic observatory Niemegk (NGK). The WDC is also holding extensive archives of magnetograms and other geomagnetic observatory data products that predate the introduction of digital data recording. The material is in analogue form such as film or microfiche. The Polar Cap index (abbreviation PC index) consists of the Polar Cap North (PCN) and the Polar Cap South (PCS) index, which are derived from magnetic measurements taken at the geomagnetic observatories Qaanaaq (THL, Greenland, +85o magnetic latitude) and Vostok (VOS, Antarctica, -83o magnetic latitude), respectively. The idea behind these indices is to estimate the intensity of anti-sunward plasma convection in the polar caps. This convection is associated with electric Hall currents and consequent magnetic field variations perpendicular to the antisunward plasma flow (and related Hall current) which can be monitored at the Qaanaaq and Vostok magnetic observatories. PC aims at monitoring the energy input from solar wind to the magnetosphere (loading activity). The index is constructed in such a way that it has a linear relationship with the merging Electric Field at the magnetopause; consequently PC is given in units of mV/m as for the electric field. In August 2013, the International Association of Geomagnetism and Aeronomy (IAGA) endorsed the PC index. The endorsed PC index is accessible at pcindex.org or through WDC Copenhagen.
The Museum is committed to open access and open science, and has launched the Data Portal to make its research and collections datasets available online. It allows anyone to explore, download and reuse the data for their own research. Our natural history collection is one of the most important in the world, documenting 4.5 billion years of life, the Earth and the solar system. Almost all animal, plant, mineral and fossil groups are represented. These datasets will increase exponentially. Under the Museum's ambitious digital collections programme we aim to have 20 million specimens digitised in the next five years.
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The MPC is responsible for the designation of minor bodies in the solar system: minor planets; comets, in conjunction with the Central Bureau for Astronomical Telegrams (CBAT); and natural satellites (also in conjunction with CBAT). The MPC is also responsible for the efficient collection, computation, checking and dissemination of astrometric observations and orbits for minor planets and comets