Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
>>>!!!<<< 2019-12-03: The repository is no longer available >>>!!!<<< Please use https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html The atomic line data used in this database are taken from Bob Kurucz' CD-ROM 23 of spectroscopic line calculations. The database contains all lines of the file "gfall.dat" with the following items for each line: Wavelength; loggf; element code; lower level: energy, J, configuration; upper level: energy, J, configuration; gamma r; gamma s; gamma w; reference code. CD-ROM 23 has all the atomic line data with good wavelengths in one large file and in one file for each species. The big file is also divided into 10 nm and 100 nm sections for convenience. Also given are hyperfine line lists for neutral Sc, V, Mn, and Co that were produced by splitting all the energy levels for which laboratory data are available (only a small fraction).
This database gives values of the basic constants and conversion factors of physics and chemistry resulting from the 2002 least-squares adjustment of the fundamental physical constants as published by the CODATA Task Group on Fundamental Constants and recommended for international use by CODATA.
Country
The database contains numerical data on atomic and molecular collisions, radiative processes and various other material properties of specific use in fusion and plasma research. Searching the database produces bibliographic results linking to the research paper containing the data of interest. Searches can be performed based on a variety of parameters including reactants, surface of interest, data type; or by date, journal or author.
<<<!!!<<< This repository is no longer available. This record is out-dated >>>!!!>>> Science3D is an Open Access project to archive and curate scientific data and make them available to everyone interested in scientific endeavours. Science3D focusses mainly on 3D tomography data from biological samples, simply because theses object make it comparably easy to understand the concepts and techniques. The data come primarily from the imaging beamlines of the Helmholtz Center Geesthacht (HZG), which make use of the uniquely bright and coherent X-rays of the Petra3 synchrotron. Petra3 - like many other photon and neutron sources in Europe and World-wide - is a fantastic instrument to investigate the microscopic detail of matter and organisms. The experiments at photon science beamlines hence provide unique insights into all kind of scientific fields, ranging from medical applications to plasma physics. The success of these experiments demands enormous efforts of the scientists and quite some investments
WISER is a self-service platform for data of the Global Networks of Isotopes in Precipitation (GNIP) and Rivers (GNIR), hosted within the IAEA's repository for technical resources (NUCLEUS). GNIP in WISER currently contains over 130,000 records, and stable isotopes are current to the end of 2013, and will be updated as verified data comes in. Parts of the GNIR water isotope data is online as well (synoptic/time series), although we are still in process of verifying and completing GNIR data uploads and for other isotopic parameters over the next year. Check back occasionally for GNIR updates. Tritium data after 2009 is in the process of being updated in the next year. When accessing WISER through the URL https://nucleus.iaea.org/wiser, you will be forwarded to the NUCLEUS log-in page. After entering your user credentials and validation, you will be forwarded to the WISER landing page.
Country
Paris Astronomical Data Centre aims at providing VO access to its data collections, at participating to international standards developments, at implementing VO compliant simulation codes, data visualization and analysis software. This centre hosts high level permanent activities for tools and data distribution under the format of reference services. These sustainable services are recognized at the national level as CNRS labeled services. The various activities are organised as portals whose functions are to provide visibility and information on the projects and to encourage collaboration.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).