Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 7 result(s)
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> C3-Grid is an ALREADY FINISHED project within D-Grid, the initiative to promote a grid-based e-Science framework in Germany. The goal of C3-Grid is to support the workflow of Earth system researchers. A grid infrastructure will be implemented that allows efficient distributed data processing and inter-institutional data exchange. Aim of the effort was to develop an infrastructure for uniform access to heterogeneous data and distributed data processing. The work was structured in two projects funded by the Federal Ministry of Education and Research. The first project was part of the D-Grid initiative and explored the potential of grid technology for climate research and developed a prototype infrastructure. Details about the C3Grid architecture are described in “Earth System Modelling – Volume 6”. In the second phase "C3Grid - INAD: Towards an Infrastructure for General Access to Climate Data" this infrastructure was improved especially with respect to interoperability to Earth System Grid Federation (ESGF). Further the portfolio of available diagnostic workflows was expanded. These workflows can be re-used now in adjacent infrastructures MiKlip Evaluation Tool (http://www.fona-miklip.de/en/index.php) and as Web Processes within the Birdhouse Framework (http://bird-house.github.io/). The Birdhouse Framework is now funded as part of the European Copernicus Climate Change Service (https://climate.copernicus.eu/) managed by ECMWF and will be extended to provide scalable processing services for ESGF hosted data at DKRZ as well as IPSL and BADC.
The Tropospheric Ozone Assessment Report (TOAR) database of global surface observations is the world's most extensive collection of surface ozone measurements and includes also data on other air pollutants and on weather for some regions. Measurements from 1970 to 2019 (Version 1) have been collected in a relational database, and are made available via a graphical web interface, a REST service (https://toar-data.fz-juelich.de/api/v1) and as aggregated products on PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.876108). Measurements from 1970 to present (Version 2) are being collected in a relational database, and are made available via a REST service (https://toar-data.fz-juelich.de/api/v2).
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
The main goal of the ECCAD project is to provide scientific and policy users with datasets of surface emissions of atmospheric compounds, and ancillary data, i.e. data required to estimate or quantify surface emissions. The supply of ancillary data - such as maps of population density, maps of fires spots, burnt areas, land cover - could help improve and encourage the development of new emissions datasets. ECCAD offers: Access to global and regional emission inventories and ancillary data, in a standardized format Quick visualization of emission and ancillary data Rationalization of the use of input data in algorithms or emission models Analysis and comparison of emissions datasets and ancillary data Tools for the evaluation of emissions and ancillary data ECCAD is a dynamical and interactive database, providing the most up to date datasets including data used within ongoing projects. Users are welcome to add their own datasets, or have their regional masks included in order to use ECCAD tools.
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.
Country
The Jülich Observatory for Cloud Evolution (JOYCE) operates ground-based active and passive remote sensing instruments for cloud and precipitation observations. ​JOYCE is based on a long-term successful collaboration between the University of Cologne, the University of Bonn and the Research Centre Jülich. Since 2017 JOYCE is transformed into a Core Facility (JOYCE - CF) funded by the DFG (Deutsche Forschungsgemeinschaft) with the aim of high quality radar and passive microwave observations of the atmosphere. JOYCE will serve as a reference center for best practices in data acquisition, storage and distribution. JOYCE instrumentation aims to observe spatial and temporal variability of atmospheric water cycle variables.