Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 102 result(s)
The DesignSafe Data Depot Repository (DDR) is the platform for curation and publication of datasets generated in the course of natural hazards research. The DDR is an open access data repository that enables data producers to safely store, share, organize, and describe research data, towards permanent publication, distribution, and impact evaluation. The DDR allows data consumers to discover, search for, access, and reuse published data in an effort to accelerate research discovery. It is a component of the DesignSafe cyberinfrastructure, which represents a comprehensive research environment that provides cloud-based tools to manage, analyze, curate, and publish critical data for research to understand the impacts of natural hazards. DesignSafe is part of the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI), and aligns with its mission to provide the natural hazards research community with open access, shared-use scholarship, education, and community resources aimed at supporting civil and social infrastructure prior to, during, and following natural disasters. It serves a broad national and international audience of natural hazard researchers (both engineers and social scientists), students, practitioners, policy makers, as well as the general public. It has been in operation since 2016, and also provides access to legacy data dating from about 2005. These legacy data were generated as part of the NSF-supported Network for Earthquake Engineering Simulation (NEES), a predecessor to NHERI. Legacy data and metadata belonging to NEES were transferred to the DDR for continuous preservation and access.
The Open Science Framework (OSF) is part network of research materials, part version control system, and part collaboration software. The purpose of the software is to support the scientist's workflow and help increase the alignment between scientific values and scientific practices. Document and archive studies. Move the organization and management of study materials from the desktop into the cloud. Labs can organize, share, and archive study materials among team members. Web-based project management reduces the likelihood of losing study materials due to computer malfunction, changing personnel, or just forgetting where you put the damn thing. Share and find materials. With a click, make study materials public so that other researchers can find, use and cite them. Find materials by other researchers to avoid reinventing something that already exists. Detail individual contribution. Assign citable, contributor credit to any research material - tools, analysis scripts, methods, measures, data. Increase transparency. Make as much of the scientific workflow public as desired - as it is developed or after publication of reports. Find public projects here. Registration. Registering materials can certify what was done in advance of data analysis, or confirm the exact state of the project at important points of the lifecycle such as manuscript submission or at the onset of data collection. Discover public registrations here. Manage scientific workflow. A structured, flexible system can provide efficiency gain to workflow and clarity to project objectives, as pictured.