Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 34 result(s)
Country
As the national oceanographic data centre for Canada, MEDS maintains centralized repositories of some oceanographic data types collected in Canada, and coordinates data exchanges between DFO and recognized intergovernmental organizations, as well as acts as a central point for oceanographic data requests. Real-time, near real-time (for operational oceanography) or historical data are made available as appropriate.
The European Monitoring and Evaluation Programme (EMEP) is a scientifically based and policy driven programme under the Convention on Long-range Transboundary Air Pollution (CLRTAP) for international co-operation to solve transboundary air pollution problems.
The Magnetics Information Consortium (MagIC) improves research capacity in the Earth and Ocean sciences by maintaining an open community digital data archive for rock magnetic, geomagnetic, archeomagnetic (archaeomagnetic) and paleomagnetic (palaeomagnetic) data. Different parts of the website allow users access to archive, search, visualize, and download these data. MagIC supports the international rock magnetism, geomagnetism, archeomagnetism (archaeomagnetism), and paleomagnetism (palaeomagnetism) research and endeavors to bring data out of private archives, making them accessible to all and (re-)useable for new, creative, collaborative scientific and educational activities. The data in MagIC is used for many types of studies including tectonic plate reconstructions, geomagnetic field models, paleomagnetic field reversal studies, magnetohydrodynamical studies of the Earth's core, magnetostratigraphy, and archeology. MagIC is a domain-specific data repository and directed by PIs who are both producers and consumers of rock, geo, and paleomagnetic data. Funded by NSF since 2003, MagIC forms a major part of https://earthref.org which integrates four independent cyber-initiatives rooted in various parts of the Earth, Ocean and Life sciences and education.
The Index to Marine and Lacustrine Geological Samples is a tool to help scientists locate and obtain geologic material from sea floor and lakebed cores, grabs, and dredges archived by participating institutions around the world. Data and images related to the samples are prepared and contributed by the institutions for access via the IMLGS and long-term archive at NGDC. Before proposing research on any sample, please contact the curator for sample condition and availability. A consortium of Curators guides the IMLGS, maintained on behalf of the group by NGDC, since 1977.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The Precipitation Processing System (PPS) evolved from the Tropical Rainfall Measuring Mission (TRMM) Science Data and Information System (TSDIS). The purpose of the PPS is to process, analyze and archive data from the Global Precipitation Measurement (GPM) mission, partner satellites and the TRMM mission. The PPS also supports TRMM by providing validation products from TRMM ground radar sites. All GPM, TRMM and Partner public data products are available to the science community and the general public from the TRMM/GPM FTP Data Archive. Please note that you need to register to be able to access this data. Registered users can also search for GPM, partner and TRMM data, order custom subsets and set up subscriptions using our PPS Data Products Ordering Interface (STORM)
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
Country
BLLAST is a research programme aimed at exploring the late afternoon transition of the atmospheric boundary layer. The late afternoon period of the diurnal cycle of the boundary layer is poorly understood. This is yet an important transition period that impacts the transport and dillution of water vapour and trace species. The main questions adressed by the project are: - How the turbulence activity fades when heating by the surface decreases? - What is the impact on the transport of chemical species? - How relevant processes can be represented in numerical models? To answer all these questions, a field campaign was carried out during the summer of 2011 (from June 14 to July 8). Many observation systems were then deployed and operated by research teams coming from France and abroad. They were spanning a large spectrum of space and time scales in order to achieve a comprehensive description of the boundary layer processes. The observation strategy consisted in intensifying the operations in the late afternoon with tethered balloons, resarch aircrafts and UAVs.
As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map is a collaborative effort among the USGS and other Federal, State, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products and services, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added within the viewer or brought in with The National Map data into a Geographic Information System to create specific types of maps or map views.
LAADS DAAC is the web interface to the Level 1 and Atmosphere Archive and Distribution System (LAADS). The mission of LAADS is to provide quick and easy access to MODIS Level 1, Atmosphere and Land data products, VIIRS Level 1 and Land data products MAS and MERIS data products. MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.
World Data Center for Oceanography serves to store and provide to users data on physical, chemical and dynamical parameters of the global ocean as well as oceanography-related papers and publications, which are either came from other countries through the international exchange or provided to the international exchange by organizations of the Russian Federation
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
>>>!!!<<<The IGETS data base at GFZ Potsdam http://www.re3data.org/repository/r3d100010300 continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of gravimeters, tiltmeters, strainmeters and other geodynamic sensors. >>>!!!<<< The ICET Data Bank contains results from 360 tidal gravity stations: hourly values, main tidal waves obtained by least squares analyses, residual vectors, oceanic attraction and loading vectors. The Data Bank contains also data from tiltmeters and extensometers. ICET is responsible for the Information System and Data Center of the Global Geodynamic Project (GGP). The tasks ascribed to ICET are : to collect all available measurements of Earth tides (which is its task as World Data Centre C), to evaluate these data by convenient methods of analysis in order to reduce the very large amount of measurements to a limited number of parameters which should contain all the desired and needed geophysical information, to compare the data from different instruments and different stations distributed all over the world, evaluate their precision and accuracy from the point of view of internal errors as well as external errors, to help to solve the basic problem of calibrations and to organize reference stations or build reference calibration devices, to fill gaps in information or data as far as feasible, to build a data bank allowing immediate and easy comparison of Earth tide parameters with different Earth models and other geodetical and geophysical parameters like geographical position, Bouguer anomaly, crustal thickness and age, heat flow, ... to ensure a broad diffusion of the results and information to all interested laboratories and individual scientists.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
The Ocean Biology Processing Group (OBPG) serves as the Distributed Active Archive Center (DAAC) for all Ocean Biology (OB) data produced or collected under NASA’s Earth Observing System Data and Information System (EOSDIS). This website thus serves as the primary data access portal to the NASA OB.DAAC. The links below provide a variety of methods to access the holdings of the OB.DAAC, including visual browsers that enable point-and-click access by data levels and direct access for bulk download. In agreement with partner organizations, some data access requires user registration to enable better tracking of usage metrics.
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. IODP depends on facilities funded by three platform providers with financial contributions from five additional partner agencies. Together, these entities represent 26 nations whose scientists are selected to staff IODP research expeditions conducted throughout the world's oceans. IODP expeditions are developed from hypothesis-driven science proposals aligned with the program's science plan Illuminating Earth's Past, Present, and Future. The science plan identifies 14 challenge questions in the four areas of climate change, deep life, planetary dynamics, and geohazards. Until 2013 under the name: International Ocean Drilling Program.
Welcome to the home page of the Rutgers/New Jersey Geological and Water Survey Core Repository. We are an official repository of the International Ocean Discovery Program (IODP), hosting Legs 150X and 174AX onshore cores drilled as part of the NJ/Mid-Atlantic Transect, and the New Jersey Geological and Water Survey (NJGWS). Cores from other ODP/IODP repositories are available through ODP. In addition to ODP/IODP cores, we are the repository for: 1. 6668 m of Newark Basin Drilling Project Triassic cores (e.g., Olsen, Kent, et al. 1996) 2. More than 10,000 m of the Army Corps of Engineers Passaic Tunnel Project Triassic and Jurassic cores 3. 1947 m of core from the Chesapeake Bay Impact Structure Deep Hole 4. Cores obtained from the Northern North Atlantic as part of the IODP Expedition 303/306 5. Cores from various rift and drift basins on the eastern and Gulf Coasts of the U.S. 6. Geological samples from the New Jersey Geological and Water Survey (NJGWS) and United States Geological Survey (USGS) including 304 m of continuous NJGWS/USGS NJ coastal plain cores.
Country
The National Atmospheric Chemistry Database (NAtChem) is a data archival and analysis facility operated by the Science and Technology Branch of Environment and Climate Change Canada. The purpose of the NAtChem database is to enhance atmospheric research through the archival and analysis of North American air and precipitation chemistry data. Such research includes investigations into the chemical nature of the atmosphere, atmospheric processes, spatial and temporal patterns, source-receptor relationships and long range transport of air pollutants. The NAtChem Database contains air and precipitation chemistry data from many major regional-scale networks in North America. To contribute to NAtChem, networks must operate for a period of at least two years, must have wide area coverage, and must have regionally-representative sites (rural and background).
Among the basic tasks of WDC-Ukraine there is collection, handling and storage of science data and giving access to it for usage both in science research and study process. That include contemporary tutoring technologies and resources of e-libraries and archives; remote access to own information resources for the wide circle of scientists from the universities and science institutions of Ukraine
Under the World Climate Research Programme (WCRP) the Working Group on Coupled Modelling (WGCM) established the Coupled Model Intercomparison Project (CMIP) as a standard experimental protocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. This framework enables a diverse community of scientists to analyze GCMs in a systematic fashion, a process which serves to facilitate model improvement. Virtually the entire international climate modeling community has participated in this project since its inception in 1995. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives much of the CMIP data and provides other support for CMIP. We are now beginning the process towards the IPCC Fifth Assessment Report and with it the CMIP5 intercomparison activity. The CMIP5 (CMIP Phase 5) experiment design has been finalized with the following suites of experiments: I Decadal Hindcasts and Predictions simulations, II "long-term" simulations, III "atmosphere-only" (prescribed SST) simulations for especially computationally-demanding models. The new ESGF peer-to-peer (P2P) enterprise system (http://pcmdi9.llnl.gov) is now the official site for CMIP5 model output. The old gateway (http://pcmdi3.llnl.gov) is deprecated and now shut down permanently.