Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Stanford Network Analysis Platform (SNAP) is a general purpose network analysis and graph mining library. It is written in C++ and easily scales to massive networks with hundreds of millions of nodes, and billions of edges. It efficiently manipulates large graphs, calculates structural properties, generates regular and random graphs, and supports attributes on nodes and edges. SNAP is also available through the NodeXL which is a graphical front-end that integrates network analysis into Microsoft Office and Excel. The SNAP library is being actively developed since 2004 and is organically growing as a result of our research pursuits in analysis of large social and information networks. Largest network we analyzed so far using the library was the Microsoft Instant Messenger network from 2006 with 240 million nodes and 1.3 billion edges. The datasets available on the website were mostly collected (scraped) for the purposes of our research. The website was launched in July 2009.
Country
MyTardis began at Monash University to solve the problem of users needing to store large datasets and share them with collaborators online. Its particular focus is on integration with scientific instruments, instrument facilities and research lab file storage. Our belief is that the less effort a researcher has to expend safely storing data, the more likely they are to do so. This approach has flourished with MyTardis capturing data from areas such as protein crystallography, electron microscopy, medical imaging and proteomics and with deployments at Australian institutions such as University of Queensland, RMIT, University of Sydney and the Australian Synchrotron. Data access via https://www.massive.org.au/ and https://store.erc.monash.edu.au/experiment/view/104/ and see 'remarks'.
The NDEx Project provides an open-source framework where scientists and organizations can share, store, manipulate, and publish biological network knowledge. The NDEx Project maintains a free, public website; alternatively, users can also decide to run their own copies of the NDEx Server software in cases where the stored networks must be kept in a highly secure environment (such as for HIPAA compliance) or where high application load is incompatible with a shared public resource.