Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
The National Science Digital Library provides high quality online educational resources for teaching and learning, with current emphasis on the sciences, technology, engineering, and mathematics (STEM) disciplines—both formal and informal, institutional and individual, in local, state, national, and international educational settings. The NSDL collection contains structured descriptive information (metadata) about web-based educational resources held on other sites by their providers. These providers have contribute this metadata to NSDL for organized search and open access to educational resources via this website and its services.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Country
sciencedata.dk is a research data store provided by DTU, the Danish Technical University, specifically aimed at researchers and scientists at Danish academic institutions. The service is intended for working with and sharing active research data as well as for safekeeping of large datasets. The data can be accessed and manipulated via a web interface, synchronization clients, file transfer clients or the command line. The service is built on and with open-source software from the ground up: FreeBSD, ZFS, Apache, PHP, ownCloud/Nextcloud. DTU is actively engaged in community efforts on developing research-specific functionality for data stores. Our servers are attached directly to the 10-Gigabit backbone of "Forskningsnettet" (the National Research and Education Network of Denmark) - implying that up and download speed from Danish academic institutions is in principle comparable to those of an external USB hard drive. Data store for research data allowing private sharing and sharing via links / persistent URLs.
Country
HilData is registered by Hildesheim University Library, The access is via registration to the data and to the repository. Research data is with regards to educational science. Research data are sensitive and cannot be made fully open. HILDE Online is integrated in HilData: https://www.uni-hildesheim.de/celeb/projekte/fallarchiv-hilde/hildeonline-streaming-server/ HilData is working on its metadata (exposing metadata via interfaces) w.r.t. the FAIR principles and data citation. HilData and HILDE Online provide long-term storage and access to research data. The research data repository provides restricted access to its data. The research data repository uses DOI to make its provided data persistent, unique and citable.
OpenML is an open ecosystem for machine learning. By organizing all resources and results online, research becomes more efficient, useful and fun. OpenML is a platform to share detailed experimental results with the community at large and organize them for future reuse. Moreover, it will be directly integrated in today’s most popular data mining tools (for now: R, KNIME, RapidMiner and WEKA). Such an easy and free exchange of experiments has tremendous potential to speed up machine learning research, to engender larger, more detailed studies and to offer accurate advice to practitioners. Finally, it will also be a valuable resource for education in machine learning and data mining.