Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 33 result(s)
The Chesapeake Bay Environmental Observatory (CBEO) is a prototype to demonstrate the utility of newly developed Cyberinfrastructure (CI) components for transforming environmental research, education, and management. The CBEO project uses a specific problem of water quality (hypoxia) as means of directly involving users and demonstrating the prototype’s utility. Data from the Test Bed are being brought into a CBEO Portal on a National Geoinformatics Grid developed by the NSF funded GEON. This is a cyberinfrastructure netwrok that allows users access to datasets as well as the tools with which to analyze the data. Currently, Test Bed data avaialble on the CBEO Portal includes Water Quality Model output and water quality monitorig data from the Chesapeake Bay Program's CIMS database. This data is also available as aggregated "data cubes". Avaialble tools include the Data Access System for Hydrology (DASH), Hydroseek and an online R-based interpolator.
China Earthquake Data Center provides Seismic data, geomagnetic data, geoelectric data, terrain data and underground fluid change data. It is only open in the Seismological Bureau.
Jason is a remote-controlled deep-diving vessel that gives shipboard scientists immediate, real-time access to the sea floor. Instead of making short, expensive dives in a submarine, scientists can stay on deck and guide Jason as deep as 6,500 meters (4 miles) to explore for days on end. Jason is a type of remotely operated vehicle (ROV), a free-swimming vessel connected by a long fiberoptic tether to its research ship. The 10-km (6 mile) tether delivers power and instructions to Jason and fetches data from it.
The National Deep Submergence Facility (NDSF) operates the Human Occupied Vehicle (HOV) Alvin, the Remote Operated Vehicle (ROV) Jason 2, and the Autonomous Underwater Vehicle (AUV) Sentry. Data acquired with these platforms is provided both to the science party on each expedition, and to the Woods Hole Oceanographic Institution (WHOI) Data Library.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
The WHOI Ship DataGrabber system provides the oceanographic community on-line access to underway ship data collected on the R/V Atlantis, Knorr, Oceanus, and Tioga (TBD). All the shipboard data is co-registered with the ship's GPS time and navigation systems.
The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling techniques and are available at multiple spatial/temporal resolutions, covering the period from 1895 to the present. Whenever possible, we offer these datasets to the public, either free of charge or for a fee (depending on dataset size/complexity and funding available for the activity).
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
Greenland Environmental Observatory (GEOSummit) provides long term year round data on core atmospheric measurements, spatial phenomena, ice sheets, and the Arctic Environment. These data are available to researchers through the National Science Foundation's Science Coordination Office (SCO) which coordinates all research at GEOSummit. Currently there is not a central platform for multi-collaborator data distribution. For specific information related to research it is recommended to contact investigators directly.
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
MODES focuses on the representation of the inertio-gravity circulation in numerical weather prediction models, reanalyses, ensemble prediction systems and climate simulations. The project methodology relies on the decomposition of global circulation in terms of 3D orthogonal normal-mode functions. It allows quantification of the role of inertio-gravity waves in atmospheric varibility across the whole spectrum of resolved spatial and temporal scales. MODES is compiled by using gfortran although other options have been succesfully tested. The application requires the use of the netcdf and (optionally) grib-api libraries.
GRID-Geneva is a unique platform providing analyses and solutions for a wide range of environmental issues. GRID-Geneva serves primarily the needs of its three institutional partners - UNEP, the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe) - which are linked by an ongoing, multi-year “Partnership Agreement”, along with other local-to-global stakeholders. GRID-Geneva is also a bilingual English and French centre and the key francophone link within the global GRID network of centres. GRID-Geneva is a key centre of geo-spatial know-how, with strengths in GIS, IP/remote sensing and statistical analyses, integrated through modern spatial data infrastructures and web applications. Working at the interface between scientific information and policy/decision-making, GRID-Geneva also helps to develop capacities in these fields of expertise among target audiences, countries and other groups.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
Country
The National Earth Observation Science Data Center, whose predecessor was the National Integrated Earth Observation Data Sharing Platform, has formed a sustainable, cross-agency, one-stop data sharing service capability after years of construction, and it is also the main channel for international exchange of remote sensing data in China. In the future, it will manage and coordinate scientific data resources in the field of earth observation on behalf of the country, and build a national-level earth observation big data infrastructure. Coordinate various industry data centers, scientific research institutions and enterprises in the field of Earth observation in China to cooperate in building a national strategic, fundamental, scientific, internationalized, and independent and controllable scientific big data environment in the field of Earth observation. On the basis of the already formed data ecology and cooperation mechanism, data sharing services, and international data cooperation, we will actively expand to the whole life cycle management of data and carry out data management work such as the collection, management, analysis and mining, and sharing services of national scientific data resources for Earth observation. Form a unified technical support system and data sharing service environment for Earth observation data in China. Maintain and enhance its international influence and become a domestic and international first-class scientific data center for Earth observation!
Country
China Meteorological Data Service Center, an upgraded system of the meteorological data sharing network, is an important component of the underlying national science and technology platform and a main portal application system of meteorological cloud. It is an authoritative and unified shared service platform for China Meteorological Administration to open its meteorological data resources to domestic and global users, and a data supporting platform for China to open its meteorological service market and promote the sharing and efficient application of meteorological information resources as a new meteorological service system. The comprehensive meteorological database provide online and offline shared services, the existing data types including global upper-air sounding data, surface observations, ocean observations, numerical forecast products, agro-meteorological data of ground observation data encryption, aircraft soundings, numerical weather prediction analysis field data, GPS-Met, Storm 2 No, GOES-9 satellite data, soil moisture, aircraft reported sandstorm monitoring, TOVS, ATOVS, wind profilers, satellite detection information.
The Martha's Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. The observatory is located at South Beach and in the ocean a mile off the south shore of Martha's Vineyard where it provides real time and archived coastal oceanographic and meteorological data for researchers, students and the general public.