Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 15 result(s)
Country
NODE (The National Omics Data Encyclopedia) provides an integrated, compatible, comparable, and scalable multi-omics resource platform that supports flexible data management and effective data release. NODE uses a hierarchical data architecture to support storage of muti-omics data including sequencing data, MS based proteomics data, MS or NMR based metabolomics data, and fluorescence imaging data. Launched in early 2017, NODE has collected and published over 900 terabytes of omics data for researchers from China and all over the world in last three years, 22% of which contains multiple omics data. NODE provides functions around the whole life cycle of omics data, from data archive, data requests/responses to data sharing, data analysis, data review and publish.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
GigaDB primarily serves as a repository to host data and tools associated with articles published by GigaScience Press; GigaScience and GigaByte (both are online, open-access journals). GigaDB defines a dataset as a group of files (e.g., sequencing data, analyses, imaging files, software programs) that are related to and support a unit-of-work (article or study). GigaDB allows the integration of manuscript publication with supporting data and tools.
Country
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
Country
>>>!!!<<< OMICtools is no longer online >>>!!!<<< We founded OMICtools in 2012 with the vision to drive progress in life science. We wanted to empower life science practitioners all over the world to achieve breakthroughs by getting data to talk. While we made tremendous progress over the past three years, developing a bioinformatics database of software and dynamic protocols, attracting more than 1.5M visitors a year, we lacked the financial support we needed to continue. We certainly gave it our all. We'd like to thank everyone who believed in us and supported us on this journey: all our users, our community, our friends, families and employees (who we consider as our extended family!). omicX will probably shut down its operations within the next few weeks. The team and I remain firmly committed to our vision, particularly at this very difficult time. It is now, more than ever before, that researchers need access to a resource that pools collective scientific intelligence. We have accumulated an awful lot of experience which we are keen to share. If your institution would be interested in taking over our website and database, to provide researchers with continued access to the platform, or you simply want to stay in touch with the omicX team, contact us at contact@omictools.com or at carine.toutain@fhbx.eu.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.