Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
<<<!!!<<< This repository is no longer available. >>>!!!>>> NetPath is currently one of the largest open-source repository of human signaling pathways that is all set to become a community standard to meet the challenges in functional genomics and systems biology. Signaling networks are the key to deciphering many of the complex networks that govern the machinery inside the cell. Several signaling molecules play an important role in disease processes that are a direct result of their altered functioning and are now recognized as potential therapeutic targets. Understanding how to restore the proper functioning of these pathways that have become deregulated in disease, is needed for accelerating biomedical research. This resource is aimed at demystifying the biological pathways and highlights the key relationships and connections between them. Apart from this, pathways provide a way of reducing the dimensionality of high throughput data, by grouping thousands of genes, proteins and metabolites at functional level into just several hundreds of pathways for an experiment. Identifying the active pathways that differ between two conditions can have more explanatory power than just a simple list of differentially expressed genes and proteins.
The Museum is committed to open access and open science, and has launched the Data Portal to make its research and collections datasets available online. It allows anyone to explore, download and reuse the data for their own research. Our natural history collection is one of the most important in the world, documenting 4.5 billion years of life, the Earth and the solar system. Almost all animal, plant, mineral and fossil groups are represented. These datasets will increase exponentially. Under the Museum's ambitious digital collections programme we aim to have 20 million specimens digitised in the next five years.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
Country
SilkDB is a database of the integrated genome resource for the silkworm, Bombyx mori. This database provides access to not only genomic data including functional annotation of genes, gene products and chromosomal mapping, but also extensive biological information such as microarray expression data, ESTs and corresponding references. SilkDB will be useful for the silkworm research community as well as comparative genomics
<<<!!!<<< OFFLINE >>>!!!>>> A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
<<<!!!<<< This repository is no longer available. >>>!!!>>> BioVeL is a virtual e-laboratory that supports research on biodiversity issues using large amounts of data from cross-disciplinary sources. BioVeL supports the development and use of workflows to process data. It offers the possibility to either use already made workflows or create own. BioVeL workflows are stored in MyExperiment - Biovel Group http://www.myexperiment.org/groups/643/content. They are underpinned by a range of analytical and data processing functions (generally provided as Web Services or R scripts) to support common biodiversity analysis tasks. You can find the Web Services catalogued in the BiodiversityCatalogue.
LifeMap Discovery® is a compendium of embryonic development for stem cell research and regenerative medicine, constructed by integrating extensive molecular, cellular, anatomical and medical data curated from scientific literature and high-throughput data sources.
The PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. It includes names, plant symbols, checklists, distributional data, species abstracts, characteristics, images, crop information, automated tools, onward Web links, and references. This information primarily promotes land conservation in the United States and its territories, but academic, educational, and general use is encouraged. PLANTS reduces government spending by minimizing duplication and making information exchange possible across agencies and disciplines.
MalaCards is an integrated database of human maladies and their annotations, modeled on the architecture and richness of the popular GeneCards database of human genes. MalaCards mines and merges varied web data sources to generate a computerized web card for each human disease. Each MalaCard contains disease specific prioritized annotative information, as well as links between associated diseases, leveraging the GeneCards relational database, search engine, and GeneDecks set-distillation tool. As proofs of concept of the search/distill/infer pipeline we find expected elucidations, as well as potentially novel ones.