Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
Country
The Data Center for Aurora in NIPR is responsible for data archiving and dissemination of all-sky camera observations, visual observations, other optical observations (such as TV and photometric observations), auroral image and particle observations from satellites, geomagnetic observations, and observations of upper atmosphere phenomena associated with aurora such as ULF, VLF and CNA activities. This Data Catalogue summarizes the collection of data sets, data books, related publications and facilities available in the WDC for Aurora as of December 2003. The WDC for Aurora changed its name as "Data Center for Aurora in NIPR" in 2008 due to the disappearance of the WDC panel in ICSU.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
This website is a portal that enables access to multi-Terabyte turbulence databases. The data reside on several nodes and disks on our database cluster computer and are stored in small 3D subcubes. Positions are indexed using a Z-curve for efficient access.
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
Chapman University Digital Commons is an open access digital repository and publication platform designed to collect, store, index, and provide access to the scholarly and creative output of Chapman University faculty, students, staff, and affiliates. In it are faculty research papers and books, data sets, outstanding student work, audiovisual materials, images, special collections, and more, all created by members of or owned by Chapman University. The datasets are listed in a separate collection.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The Arctic Data Center is the primary data and software repository for the Arctic section of NSF Polar Programs. The Center helps the research community to reproducibly preserve and discover all products of NSF-funded research in the Arctic, including data, metadata, software, documents, and provenance that links these together. The repository is open to contributions from NSF Arctic investigators, and data are released under an open license (CC-BY, CC0, depending on the choice of the contributor). All science, engineering, and education research supported by the NSF Arctic research program are included, such as Natural Sciences (Geoscience, Earth Science, Oceanography, Ecology, Atmospheric Science, Biology, etc.) and Social Sciences (Archeology, Anthropology, Social Science, etc.). Key to the initiative is the partnership between NCEAS at UC Santa Barbara, DataONE, and NOAA’s NCEI, each of which bring critical capabilities to the Center. Infrastructure from the successful NSF-sponsored DataONE federation of data repositories enables data replication to NCEI, providing both offsite and institutional diversity that are critical to long term preservation.