Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
Western Regional Climate Center (WRCC) provides historical and current climate data for the western United States. WRCC is one of six regional climate centers partnering with NOAA research institutes to promote climate research and data stewardship.
The Precipitation Processing System (PPS) evolved from the Tropical Rainfall Measuring Mission (TRMM) Science Data and Information System (TSDIS). The purpose of the PPS is to process, analyze and archive data from the Global Precipitation Measurement (GPM) mission, partner satellites and the TRMM mission. The PPS also supports TRMM by providing validation products from TRMM ground radar sites. All GPM, TRMM and Partner public data products are available to the science community and the general public from the TRMM/GPM FTP Data Archive. Please note that you need to register to be able to access this data. Registered users can also search for GPM, partner and TRMM data, order custom subsets and set up subscriptions using our PPS Data Products Ordering Interface (STORM)
The Barrow, Alaska Observatory (BRW) archives and provides digital access to their findings related to climate change, ozone depletion and baseline air quality. The BRW is part of the National Oceanic and Atmospheric Administration and Earth System Research Laboratory Global Monitoring Division.
The IRI/LDEO Climate Data Library is a collection of climate data sets with the focus of climate change monitoring and mitigation. Browse data by category and source, navigate and analyze datasets using maps, and the Ingrid Data Analysis Language. The IRI/LDEO also includes web tutorials.
DARECLIMED data repository consists of three kind of data: (a) climate, (b) water resources, and (c) energy related data. The first part, climate datasets, will include atmospheric and indirect atmospheric data, proxies and reconstructions, terrestrial and oceanic data. Land use, population, economy and development data will be added as well. Datasets can be handled and analyzed by connecting to the Live Access Server (LAS), which enables to visualize data with on-the-fly graphics, request custom subsets of variables in a choice of file formats, access background reference material about the data (metadata), and compare (difference) variables from distributed locations. Access to server is granted upon request by emailing the data repository manager.
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.
The Greenland Climate Network provides year-round data on the climate of Greenland's ice sheet. These data are available to researchers by request through the Greenland Climate Network Data Request Web page. GC-Net data, previously hosted by CIRES, have now been moved to WSL’s Envidat data repository. The Geological Survey of Denmark and Greenland (GEUS) in Copenhagen, has been appointed to the continuation of climate monitoring at the GC-Net sites (https://eng.geus.dk/about/news/news-archive/2020/december/geus-takes-over-american-climate-stations-on-the-greenland-ice-sheet). The new GC-Net data will be distributed through the PROMICE website (https://www.promice.org/).
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.