Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 38 result(s)
TES is the first satellite instrument to provide simultaneous concentrations of carbon monoxide, ozone, water vapor and methane throughout Earth’s lower atmosphere. This lower atmosphere (the troposphere) is situated between the surface and the height at which aircraft fly, and is an important part of the atmosphere that we often impact with our activities.
OBIS strives to document the ocean's diversity, distribution and abundance of life. Created by the Census of Marine Life, OBIS is now part of the Intergovernmental Oceanographic Commission (IOC) of UNESCO, under its International Oceanographic Data and Information Exchange (IODE) programme
SeaBASS, the publicly shared archive of in situ oceanographic and atmospheric data maintained by the NASA Ocean Biology Processing Group (OBPG). High quality in situ measurements are prerequisite for satellite data product validation, algorithm development, and many climate-related inquiries. As such, the NASA Ocean Biology Processing Group (OBPG) maintains a local repository of in situ oceanographic and atmospheric data to support their regular scientific analyses. The SeaWiFS Project originally developed this system, SeaBASS, to catalog radiometric and phytoplankton pigment data used their calibration and validation activities. To facilitate the assembly of a global data set, SeaBASS was expanded with oceanographic and atmospheric data collected by participants in the SIMBIOS Program, under NASA Research Announcements NRA-96 and NRA-99, which has aided considerably in minimizing spatial bias and maximizing data acquisition rates. Archived data include measurements of apparent and inherent optical properties, phytoplankton pigment concentrations, and other related oceanographic and atmospheric data, such as water temperature, salinity, stimulated fluorescence, and aerosol optical thickness. Data are collected using a number of different instrument packages, such as profilers, buoys, and hand-held instruments, and manufacturers on a variety of platforms, including ships and moorings.
The World Ocean Database (WOD) is a collection of scientifically quality-controlled ocean profile and plankton data that includes measurements of temperature, salinity, oxygen, phosphate, nitrate, silicate, chlorophyll, alkalinity, pH, pCO2, TCO2, Tritium, Δ13Carbon, Δ14Carbon, Δ18Oxygen, Freon, Helium, Δ3Helium, Neon, and plankton. WOD contains all data of "World Data Service Oceanography" (WDS-Oceanography).
The Woods Hole Open Access Server, WHOAS, is an institutional repository that captures, stores, preserves, and redistributes the intellectual output of the Woods Hole scientific community in digital form. WHOAS is managed by the MBLWHOI Library as a service to the Woods Hole scientific community
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.
The PDS archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. The PDS is sponsored by NASA's Science Mission Directorate. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research
The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, processes solar radiation data currently submitted from more than 500 stations located in 56 countries and operates an archive with more than 1200 stations listed in its catalogue. The WRDC is the central depository of the measured components such as: global, diffuse and direct solar radiation, downward atmospheric radiation, net total and terrestrial surface radiation (upward), spectral radiation components (instantaneous fluxes), and sunshine duration, on hourly, daily or monthly basis.
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
The Earth System Grid Federation (ESGF) is an international collaboration with a current focus on serving the World Climate Research Programme's (WCRP) Coupled Model Intercomparison Project (CMIP) and supporting climate and environmental science in general. Data is searchable and available for download at the Federated ESGF-CoG Nodes https://esgf.llnl.gov/nodes.html
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
Additionally to the institutional repository, current St. Edward's faculty have the option of uploading their work directly to their own SEU accounts on stedwards.figshare.com. Projects created on Figshare will automatically be published on this website as well. For more information, please see documentation
Vast networks of meteorological sensors ring the globe measuring atmospheric state variables, like temperature, humidity, wind speed, rainfall, and atmospheric carbon dioxide, on a continuous basis. These measurements serve earth system science by providing inputs into models that predict weather, climate and the cycling of carbon and water. And, they provide information that allows researchers to detect the trends in climate, greenhouse gases, and air pollution. The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace gases between ecosystems and atmosphere.
The main goal of the ECCAD project is to provide scientific and policy users with datasets of surface emissions of atmospheric compounds, and ancillary data, i.e. data required to estimate or quantify surface emissions. The supply of ancillary data - such as maps of population density, maps of fires spots, burnt areas, land cover - could help improve and encourage the development of new emissions datasets. ECCAD offers: Access to global and regional emission inventories and ancillary data, in a standardized format Quick visualization of emission and ancillary data Rationalization of the use of input data in algorithms or emission models Analysis and comparison of emissions datasets and ancillary data Tools for the evaluation of emissions and ancillary data ECCAD is a dynamical and interactive database, providing the most up to date datasets including data used within ongoing projects. Users are welcome to add their own datasets, or have their regional masks included in order to use ECCAD tools.
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. IODP depends on facilities funded by three platform providers with financial contributions from five additional partner agencies. Together, these entities represent 26 nations whose scientists are selected to staff IODP research expeditions conducted throughout the world's oceans. IODP expeditions are developed from hypothesis-driven science proposals aligned with the program's science plan Illuminating Earth's Past, Present, and Future. The science plan identifies 14 challenge questions in the four areas of climate change, deep life, planetary dynamics, and geohazards. Until 2013 under the name: International Ocean Drilling Program.
The Geoscience Data Exchange (GDEX) mission is to provide public access to data and other digital research assets related to the Earth and its atmosphere, oceans, and space environment. GDEX fulfills federal and scientific publication requirements for open data access by: Providing long-term curation and stewardship of research assets; Enabling scientific transparency and traceability of research findings in digital formats; Complementing existing NCAR community data management and archiving capabilities; Facilitating openness and accessibility for the public to leverage the research assets and thereby benefit from NCAR's historical and ongoing scientific research. This mission intentionally supports and aligns with those of NCAR and its sponsor, the National Science Foundation (NSF).
CESM is a fully-coupled, community, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.
USGS data and tools are the digital information in a format suitable for direct input to software that can analyze its meaning in the scientific, engineering, or business context for which the data were collected.
CSDMS is a virtual home for a vibrant and growing community of about 1,000 international modeling experts and students who study the dynamic interactions of lithosphere, hydrosphere, cryosphere, and atmosphere at Earth’s surface. Participating in cross-disciplinary groups, members develop integrated software modules that predict the movement of water, sediment, and nutrients across landscapes and into the ocean. We share an open library of models, software, and access to high-performance computing. We also share knowledge that helps create higher-resolution simulations, often involving higher complexity algorithms. Together, we support the discovery, use, and conservation of natural resources; mitigation of natural hazards; geotechnical support of commercial and infrastructure development; environmental stewardship; and terrestrial surveillance for global security.
The NCAR Climate Data Gateway provides data discovery and access services for global and regional climate model data, knowledge, and software. The NCAR Climate Data Gateway supports community access to data products from many of NCAR's community modeling efforts, including the IPCC, PCM, AMPS, CESM, NARCCAP, and NMME activities. Data products are generally open and available, however, download access may require a login.
Using a combination of remote sensing data and ground observations as inputs, CHC scientists have developed rainfall estimation techniques and other resources to support drought monitoring and predict crop performance in parts of the world vulnerable to crop failure. Policymakers within governments and non-governmental organizations rely on CHC decision-support products to make critical resource allocation decisions. The CHC's scientific focus is "geospatial hydroclimatology," with an emphasis on the early detection and forecasting of hydroclimatic hazards related to food-security droughts and floods. Basic research seeks an improved understanding of the climatic processes that govern drought and flood hazards in FEWS NET countries (https://fews.net/). The CHC develops better techniques, algorithms, and modeling applications in order to use remote sensing and other geospatial data for hazards early warning.