Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner.
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
AMCSD is an interface to a crystal structure database that includes every structure published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, as well as selected datasets from other journals. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association of Canada, and financed by the National Science Foundation. You may search by a mineral of your choice, or choose a mineral from a complete list to help aid your research.
OrtholugeDB contains Ortholuge-based orthology predictions for completely sequenced bacterial and archaeal genomes. It is also a resource for reciprocal best BLAST-based ortholog predictions, in-paralog predictions (recently duplicated genes) and ortholog groups in Bacteria and Archaea. The Ortholuge method improves the specificity of high-throughput orthology prediction.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.