Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
HITRAN is an acronym for high-resolution transmission molecular absorption database. The HITRAN compilation of the SAO (HIgh resolution TRANmission molecular absorption database) is used for predicting and simulating transmission and emission of light in atmospheres. It is the world-standard database in molecular spectroscopy. The journal article describing it is the most cited reference in the geosciences. There are presently about 5000 HITRAN users world-wide. Its associated database HITEMP (high-temperature spectroscopic absorption parameters) is accessible by the HITRAN website.
AtomDB is an atomic database useful for X-ray plasma spectral modeling. The current version of AtomDB is primarly used for modeing collisional plasmas, those where hot electrons colliding with astrophysically abundant elements and ions create X-ray emission. However, AtomDB is also useful when modeling absorption by elements and ions or even photoionized plasmas, where X-ray photons (often from a simple power-law source) interacting with elements and ions create complex spectra.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).