Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
M-CSA is a database of enzyme reaction mechanisms. It provides annotation on the protein, catalytic residues, cofactors, and the reaction mechanisms of hundreds of enzymes. There are two kinds of entries in M-CSA. 'Detailed mechanism' entries are more complete and show the individual chemical steps of the mechanism as schemes with electron flow arrows. 'Catalytic Site' entries annotate the catalytic residues necessary for the reaction, but do not show the mechanism. The M-CSA (Mechanism and Catalytic Site Atlas) represents a unified resource that combines the data in both MACiE and the CSA
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
Country
The Toxin and Toxin Target Database is a unique bioinformatics resource that combines detailed toxin data with comprehensive toxin target information. The focus of the T3DB is on providing mechanisms of toxicity and target proteins for each toxin. This dual nature of the T3DB, in which toxin and toxin target records are interactively linked in both directions, makes it unique from existing databases.
ChEMBL is a database of bioactive drug-like small molecules, it contains 2-D structures, calculated properties (e.g. logP, Molecular Weight, Lipinski Parameters, etc.) and abstracted bioactivities (e.g. binding constants, pharmacology and ADMET data). The data is abstracted and curated from the primary scientific literature, and cover a significant fraction of the SAR and discovery of modern drugs We attempt to normalise the bioactivities into a uniform set of end-points and units where possible, and also to tag the links between a molecular target and a published assay with a set of varying confidence levels. Additional data on clinical progress of compounds is being integrated into ChEMBL at the current time.