Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
The Keck Observatory Archive (KOA)is a collaboration between the NASA Exoplanet Science Institute (NExScI) and the W. M. Keck Observatory (WMKO). This collaboration is founded by the NASA. KOA has been archiving data from the High Resolution Echelle Spectrograph (HIRES) since August 2004 and data acquired with the Near InfraRed echelle SPECtrograph (NIRSPEC) since May 2010. The archived data extend back to 1994 for HIRES and 1999 for NIRSPEC. The W. M. Keck Observatory Archive (KOA) ingests and curates data from the following instruments: DEIMOS, ESI, HIRES, KI, LRIS, MOSFIRE, NIRC2, and NIRSPEC.
Finding planets orbiting nearby stars has been a holy grail in astronomy for more than 400 years. We began working on this problem 30 years ago, at a time when there were no known extrasolar planets. In late 1995 we began routinely finding planets around the nearest stars. Since then we have found several hundred planets, including the first sub-saturn mass planet, the first neptune mass planet, the first terrestrial mass planet, the first multiple planet system, and the first transiting planet.
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
Country
The task of WDC geomagnetism is to collect geomagnetic data from all over the globe and distribute those data to researchers and data users, as a World Data Center for Geomagnetism.
The European VLBI Network (EVN) is an interferometric array of radio telescopes located primarily in Europe and Asia, with additional telescopes in South Africa and Puerto Rico. The EVN performs high-resolution observations of cosmic radio sources at wavelenghts from 92cm to 7mm. The EVN Data Archive contains, among other things, the correlated data from EVN observations plus pipeline output, including the initial calibration tables to apply to the correlated data and preliminary images. In general, the correlated data and some pipeline results are proprietary for one year following distribution to the PI of the final epoch of observations resulting from a proposal after which the data enters the public domain; more details are in the "EVN Data Access Policy" linked via the archive-introduction page.
The WDC Geomagnetism, Edinburgh has a comprehensive set of digital geomagnetic data as well as indices of geomagnetic activity supplied from a worldwide network of magnetic observatories. The data and services at the WDC are available for scientific use without restrictions.
STARK-B is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. This database is devoted to modeling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is also devoted to laboratory plasmas, laser equipments and technological plasmas. So, the domain of temperatures and densities covered by the tables is wide and depends on the ionization degree of the considered ion. The temperature can vary from several thousands for neutral atoms to several hundred thousands of Kelvin for highly charged ions. The electron or ion density can vary from 1012 (case of stellar atmospheres) to several 1019cm-3 (some white dwarfs and some laboratory plasmas).