Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 2 result(s)
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.
The GTN-P database is an object-related database open for a diverse range of data. Because of the complexity of the PAGE21 project, data provided in the GTN-P management system are extremely diverse, ranging from active-layer thickness measurements once per year to flux measurement every second and everthing else in between. The data can be assigned to two broad categories: Quantitative data which is all data that can be measured numerically. Quantitative data comprise all in situ measurements, i.e. permafrost temperatures and active layer thickness (mechanical probing, frost/thaw tubes, soil temperature profiles). Qualitative data (knowledge products) are observations not based on measurements, such as observations on soils, vegetation, relief, etc.