Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 53 result(s)
The datacommons@psu was developed in 2005 to provide a resource for data sharing, discovery, and archiving for the Penn State research and teaching community. Access to information is vital to the research, teaching, and outreach conducted at Penn State. The datacommons@psu serves as a data discovery tool, a data archive for research data created by PSU for projects funded by agencies like the National Science Foundation, as well as a portal to data, applications, and resources throughout the university. The datacommons@psu facilitates interdisciplinary cooperation and collaboration by connecting people and resources and by: Acquiring, storing, documenting, and providing discovery tools for Penn State based research data, final reports, instruments, models and applications. Highlighting existing resources developed or housed by Penn State. Supporting access to project/program partners via collaborative map or web services. Providing metadata development citation information, Digital Object Identifiers (DOIs) and links to related publications and project websites. Members of the Penn State research community and their affiliates can easily share and house their data through the datacommons@psu. The datacommons@psu will also develop metadata for your data and provide information to support your NSF, NIH, or other agency data management plan.
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
The Netherlands Polar Data Center (NPDC) is part of the Netherlands Polar Program (NPP). NPDC archives and provides access to the data of Polar Research by researchers funded by Dutch Research Council (NWO) or otherwise carried out by researchers from Dutch universities and research institutions. The repository provides: 1) An overview of current and completed projects from the Netherlands Polar Programme (NPP) and other Dutch projects in the Polar Regions; 2) Access to the data of research carried out by Dutch researchers in the Polar Regions; and, 3) Links to external sources of Polar research data. For more information about the NPDC and the services it may offer to the Dutch Polar research community see https://npdc.nl/npdc.
Country
Ocean Networks Canada maintains several observatories installed in three different regions in the world's oceans. All three observatories are cabled systems that can provide power and high bandwidth communiction paths to sensors in the ocean. The infrastructure supports near real-time observations from multiple instruments and locations distributed across the Arctic, NEPTUNE and VENUS observatory networks. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible.
Country
>>>>!!!<<< NEPTUNE Canada is now part of Ocean Networks Canada and this website is being phased out. Please visit us on our new website at oceannetworks.ca >>>!!!<<< NEPTUNE Canada, the North-East Pacific Time-series Undersea Networked Experiments, is the world's first regional scale cabled deep ocean observing network. It consists of an 800km network of electro‐optic cable laid on the seabed over the northern Juan de Fuca tectonic plate, off the coast of British Columbia. This tectonic plate serves as an exceptional natural laboratory for ocean observation and experiments. NEPTUNE Canada instruments yield continuous real‐time data and imagery from the ocean surface to beneath the seafloor, and from the coast to the deep sea. They respond to events such as earthquakes, tsunamis, fish migrations, plankton blooms, storms and volcanic eruptions. NEPTUNE Canada offers a unique and exciting approach to ocean science.
This website is a portal that enables access to multi-Terabyte turbulence databases. The data reside on several nodes and disks on our database cluster computer and are stored in small 3D subcubes. Positions are indexed using a Z-curve for efficient access.
The Data Library and Archives (DLA) is part of the joint library system supported by the Marine Biological Laboratory and the Woods Hole Oceanographic Institution. The DLA holds collections of administrative records, photographs, scientists' data and papers, film and video, historical instruments, as well as books, journals and technical reports.
PISCO researchers collect biological, chemical, and physical data about ocean ecosystems in the nearshore portions of the California Current Large Marine Ecosystem. Data are archived and used to create summaries and graphics, in order to ensure that the data can be used and understood by a diverse audience of managers, policy makers, scientists and the general public.
>>>!!!<<<The repository is offline >>>!!!<<< The Space Physics Interactive Data Resource from NOAA's National Geophysical Data Center allows solar terrestrial physics customers to intelligently access and manage historical space physics data for integration with environment models and space weather forecasts.
The DCS allows you to search a catalogue of metadata (information describing data) to discover and gain access to NERC's data holdings and information products. The metadata are prepared to a common NERC Metadata Standard and are provided to the catalogue by the NERC Data Centres.
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for processing, archiving, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry.The ASDC specializes in atmospheric data important to understanding the causes and processes of global climate change and the consequences of human activities on the climate.
Country
EarthByte is an internationally leading eGeoscience collaboration between several Australian Universities, international centres of excellence and industry partners. One of the fundamental aims of the EarthByte Group is geodata synthesis through space and time, assimilating the wealth of disparate geological and geophysical data into a four-dimensional Earth model including tectonics, geodynamics and surface processes. The EarthByte Group is pursuing open innovation via collaborative software development, high performance and distributed computing, “big data” analysis and by making open access digital data collections available to the community.
Country
The Flanders Marine Institute (VLIZ) is a centre for marine and coastal research. As a partner in various projects and networks it promotes and supports the international image of Flemish marine scientific research and international marine education. In its capacity as a coordination and information platform, the Flanders Marine Institute (VLIZ) supports some thousand marine scientists in Flanders by disseminating their knowledge to policymakers, educators, the general public and scientists.
WHOI is the world's leading non-profit oceanographic research organization. WHOI maintains unparalleled depth and breadth of expertise across a range of oceanographic research areas. Institution scientists and engineers work collaboratively within and across six research departments to advance knowledge of the global ocean and its fundamental importance to other planetary systems. At the same time, they also train future generations of ocean scientists and address problems that have a direct impact in efforts to understand and manage critical marine resources.
Country
>>>!!!<<<VENUS coastal network, is now part of the Ocean Networks Canada Observatory>>>!!!<<< VENUS is a cabled undersea laboratory for ocean researchers and explorers. VENUS delivers real time information from seafloor instruments via fibre optic cables to the University of Victoria, BC. You can see ocean data live, recent and archived as well as learn more about on-going research
The goal of NGEE–Arctic is to reduce uncertainty in projections of future climate by developing and validating a model representation of permafrost ecosystems and incorporating that representation into Earth system models. The new modeling capabilities will improve our confidence in model projections and will enable scientist to better respond to questions about processes and interactions now and in the future. It also will allow them to better communicate important results concerning climate change to decision makers and the general public. And let's not forget about summer in the Antarctic, which happens during our winter months.
IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth's interior.
The MHKDR is the repository for all data collected using funds from the Water Power Technologies Office (WPTO) of the U.S. Department of Energy (DOE). It was established to receive, manage, and make available all water power relevant data generated from projects funded by the DOE Water Power Technologies Office. This includes data from WPTO-funded projects associated with any portion of the water power project life-cycle (exploration, development, operation), as well as data produced by WPTO-funded research.
US Department of Energy’s Atmospheric Radiation Measurement (ARM) Data Center is a long-term archive and distribution facility for various ground-based, aerial and model data products in support of atmospheric and climate research. ARM facility currently operates over 400 instruments at various observatories (https://www.arm.gov/capabilities/observatories/). ARM Data Center (ADC) Archive currently holds over 11,000 data products with a total holding of over 3 petabytes of data that dates back to 1993, these include data from instruments, value added products, model outputs, field campaign and PI contributed data. The data center archive also includes data collected by ARM from related program (e.g., external data such as NASA satellite).
The Alvin Frame-Grabber system provides the NDSF community on-line access to Alvin's video imagery co-registered with vehicle navigation and attitude data for shipboard analysis, planning deep submergence research cruises, and synoptic review of data post-cruise. The system is built upon the methodology and technology developed for the JasonII Virtual Control Van and a prototype system that was deployed on 13 Alvin dives in the East Pacific Rise and the Galapagos (AT7-12, AT7-13). The deployed prototype system was extremely valuable in facilitating real-time dive planning, review, and shipboard analysis.
British Antarctic Survey (BAS) has, for over 60 years, undertaken the majority of Britain's scientific research on and around the Antarctic continent. Atmospheric, biosphere, cryosphere, geosphere, hydrosphere, and Sun-Earth interactions metadata and data are available. Geographic information and collections are highlighted as well. Information and mapping services include a Discovery Metadata System, Data Access System, the Antarctic Digital Database (ADD), Geophysics Data Portal (BAS-GDP), ICEMAR, a fossil database, and the Antarctic Plant Database.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.