Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 16 result(s)
<<<<< ----- !!! The data is in the phase of migration to another system. Therefore the repository is no longer available. This record is out-dated.; 2020-10-06 !!! ----- >>>>> Due to the changes at the individual IGS analysis centers during these years the resulting time series of global geodetic parameters are inhomogeneous and inconsistent. A geophysical interpretation of these long series and the realization of a high-accuracy global reference frame are therefore difficult and questionable. The GPS reprocessing project GPS-PDR (Potsdam Dresden Reprocessing), initiated by TU München and TU Dresden and continued by GFZ Potsdam and TU Dresden, provides selected products of a homogeneously reprocessed global GPS network such as GPS satellite orbits and Earth rotation parameters.
coastDat is a model based data bank developed mainly for the assessment of long-term changes in data sparse regions. A sequence of numerical models is employed to reconstruct all aspects of marine climate (such as storms, waves, surges etc.) over many decades of years relying only on large-scale information such as large-scale atmospheric conditions or bathymetry.
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
Our research focuses mainly on the past and present bio- and geodiversity and the evolution of animals and plants. The Information Technology Center of the Staatliche Naturwissenschaftliche Sammlungen Bayerns is the institutional repository for scientific data of the SNSB. Its major tasks focus on the management of bio- and geodiversity data using different kinds of information technological structures. The facility guarantees a sustainable curation, storage, archiving and provision of such data.
The Bavarian Natural History Collections (Staatliche Naturwissenschaftliche Sammlungen Bayerns, SNSB) are a research institution for natural history in Bavaria. They encompass five State Collections (zoology, botany, paleontology and geology, mineralogy, anthropology and paleoanatomy), the Botanical Garden Munich-Nymphenburg and eight museums with public exhibitions in Munich, Bamberg, Bayreuth, Eichstätt and Nördlingen. Our research focuses mainly on the past and present bio- and geodiversity and the evolution of animals and plants. To achieve this we have large scientific collections (almost 35,000,000 specimens), see "joint projects".
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
Content type(s)
IGETS is the International Geodynamics and Earth Tide Service of the International Association of Geodesy (IAG). The main objective of IGETS is to monitor temporal variations of the Earth gravity field through long‐term records from ground gravimeters, tiltmeters, strainmeters and other geodynamic sensors. IGETS continues the activities of the Global Geodynamics Project (GGP) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Furthermore, IGETS continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of gravimeters, tiltmeters, strainmeters and other geodynamic sensors. GFZ is the main Data Center and operates the IGETS data base of worldwide high precision SG records. EOST (Ecole et Observatoire des Sciences de la Terre, Strasbourg, France) is the secondary Data Center, The University of French Polynesia (Tahiti) and EOST (Strasbourg, France) are the two current Analysis Centers.
The aim of the Freshwater Biodiversity Data Portal is to integrate and provide open and free access to freshwater biodiversity data from all possible sources. To this end, we offer tools and support for scientists interested in documenting/advertising their dataset in the metadatabase, in submitting or publishing their primary biodiversity data (i.e. species occurrence records) or having their dataset linked to the Freshwater Biodiversity Data Portal. This information portal serves as a data discovery tool, and allows scientists and managers to complement, integrate, and analyse distribution data to elucidate patterns in freshwater biodiversity. The Freshwater Biodiversity Data Portal was initiated under the EU FP7 BioFresh project and continued through the Freshwater Information Platform (http://www.freshwaterplatform.eu). To ensure the broad availability of biodiversity data and integration in the global GBIF index, we strongly encourages scientists to submit any primary biodiversity data published in a scientific paper to national nodes of GBIF or to thematic initiatives such as the Freshwater Biodiversity Data Portal.
The WDC has a FTP-server to distribute the PCN index derived from the geomagnetic observatory Qaanaaq (THL) and the Kp-index data products derived at the geomagnetic observatory Niemegk (NGK). The WDC is also holding extensive archives of magnetograms and other geomagnetic observatory data products that predate the introduction of digital data recording. The material is in analogue form such as film or microfiche. The Polar Cap index (abbreviation PC index) consists of the Polar Cap North (PCN) and the Polar Cap South (PCS) index, which are derived from magnetic measurements taken at the geomagnetic observatories Qaanaaq (THL, Greenland, +85o magnetic latitude) and Vostok (VOS, Antarctica, -83o magnetic latitude), respectively. The idea behind these indices is to estimate the intensity of anti-sunward plasma convection in the polar caps. This convection is associated with electric Hall currents and consequent magnetic field variations perpendicular to the antisunward plasma flow (and related Hall current) which can be monitored at the Qaanaaq and Vostok magnetic observatories. PC aims at monitoring the energy input from solar wind to the magnetosphere (loading activity). The index is constructed in such a way that it has a linear relationship with the merging Electric Field at the magnetopause; consequently PC is given in units of mV/m as for the electric field. In August 2013, the International Association of Geomagnetism and Aeronomy (IAGA) endorsed the PC index. The endorsed PC index is accessible at pcindex.org or through WDC Copenhagen.
The Global Precipitation Climatology Centre (GPCC) provides global precipitation analyses for monitoring and research of the earth's climate. The centre is a German contribution to the World Climate Research Programme (WCRP) and to the Global Climate Observing System (GCOS).
The International Center for Global Earth Models collects and distributes historical and actual global gravity field models of the Earth and offers calculation service for derived quantities. In particular the tasks include: collecting and archiving of all existing global gravity field models, web interface for getting access to global gravity field models, web based visualization of the gravity field models their differences and their time variation, web based service for calculating different functionals of the gravity field models, web site for tutorials on spherical harmonics and the theory of the calculation service. As new service since 2016, ICGEM is providing a Digital Object Identifier (DOI) for the data set of the model (the coefficients).
The GTN-P database is an object-related database open for a diverse range of data. Because of the complexity of the PAGE21 project, data provided in the GTN-P management system are extremely diverse, ranging from active-layer thickness measurements once per year to flux measurement every second and everthing else in between. The data can be assigned to two broad categories: Quantitative data which is all data that can be measured numerically. Quantitative data comprise all in situ measurements, i.e. permafrost temperatures and active layer thickness (mechanical probing, frost/thaw tubes, soil temperature profiles). Qualitative data (knowledge products) are observations not based on measurements, such as observations on soils, vegetation, relief, etc.
<<<!!!<<< Duplicate to https://www.re3data.org/repository/r3d100011116 , this entry is no longer maintained >>>!!!>>> GGOS is the Global Geodetic Observing System of the International Association of Geodesy (IAG). It provides observations of the three fundamental geodetic observables and their variations, that is, the Earth's shape, the Earth's gravity field and the Earth's rotational motion. GGOS integrates different geodetic techniques, different models, different approaches in order to ensure a long-term, precise monitoring of the geodetic observables in agreement with the Integrated Global Observing Strategy (IGOS). GGOS provides the observational basis to maintain a stable, accurate and global reference frame and in this function is crucial for all Earth observation and many practical applications.