Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 34 result(s)
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
Country
GEOFON seeks to facilitate cooperation in seismological research and earthquake and tsunami hazard mitigation by providing rapid transnational access to seismological data and source parameters of large earthquakes, and keeping these data accessible in the long term. It pursues these aims by operating and maintaining a global network of permanent broadband stations in cooperation with local partners, facilitating real time access to data from this network and those of many partner networks and plate boundary observatories, providing a permanent and secure archive for seismological data. It also archives and makes accessible data from temporary experiments carried out by scientists at German universities and institutions, thereby fostering cooperation and encouraging the full exploitation of all acquired data and serving as the permanent archive for the Geophysical Instrument Pool at Potsdam (GIPP). It also organises the data exchange of real-time and archived data with partner institutions and international centres.
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
Country
HALO-DB is the web platform of a data retrieval and long-term archive system. The system was established to hold and to manage a wide range of data based on observations of the HALO research aircraft and data which are related to HALO observations. HALO (High-Altitude and LOng-range aircraft) is the new German research aircraft (German Science Community (DFG)). The aircraft, a Gulfstream GV-550 Business-Jet, is strongly modified for the application as a research platform. HALO offers several advantages for scientific campaigns, such as its high range of more than 10000 km, a high maximum altitude of more than 15 km, as well as a relatively high payload.
Country
CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (magnetometer, accelerometer, star sensor, GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP will generate for the first time simultaneously highly precise gravity and magnetic field measurements over a 5 years period. This will allow to detect besides the spatial variations of both fields also their variability with time. The CHAMP mission had opened a new era in geopotential research and had become a significant contributor to the Decade of Geopotentials. In addition with the radio occultation measurements onboard the spacecraft and the infrastructure developed on ground, CHAMP had become a pilot mission for the pre-operational use of space-borne GPS observations for atmospheric and ionospheric research and applications in weather prediction and space weather monitoring. End of the mission of CHAMP was at September 19 2010, after ten years, two month and four days, after 58277 orbits.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
<<<!!!<<< The data is in the phase of migration to another system. Therefore the repository is no longer available. This record is out-dated.; 2020-10-06 !!! >>>!!!>>> Due to the changes at the individual IGS analysis centers during these years the resulting time series of global geodetic parameters are inhomogeneous and inconsistent. A geophysical interpretation of these long series and the realization of a high-accuracy global reference frame are therefore difficult and questionable. The GPS reprocessing project GPS-PDR (Potsdam Dresden Reprocessing), initiated by TU München and TU Dresden and continued by GFZ Potsdam and TU Dresden, provides selected products of a homogeneously reprocessed global GPS network such as GPS satellite orbits and Earth rotation parameters.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Country
The GEOROC data repository hosts research data within the scope of the GEOROC database: geochemical compositions of rocks, glasses, minerals and inclusions from all geological settings on Earth. The repository is curated by the Digital Geochemical Data Infrastructure (DIGIS) project at Göttingen University.
Country
LIAG's Geophysics Information System (FIS GP) serves for the storage and supply of geophysical measurements and evaluations of LIAG and its partners. The architecture of the overall system intends a subdivision into an universal part (superstructure) and into several subsystems dedicated to geophysical methods (borehole geophysics, gravimetry, magnetics, 1D/2D geoelectrics, underground temperatures, seismics, VSP, helicopter geophysics and rock physics. The building of more subsystems is planned.
Country
The MOSES Data Discovery Portal is the central component of the MOSES data management infrastructure. It holds the metadata of MOSES campaigns, sensors and data and enables high-performance data searches. In addition, it provides access to the decentral data repositories and infrastructures of the participating Helmholtz centers where MOSES data is stored.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
Country
The data repository of the Helmholtz Centre for Environmental Research. The Data Investigation Portal (DRP) provides the opportunity to publicly access the administered data in the Data Management Portal and search them. The presentation is here limited to metadata and non-restricted information. DRP users can thus gain an overview of the data sets and, if necessary, contact the author to gain access to the data.
The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. IODP depends on facilities funded by three platform providers with financial contributions from five additional partner agencies. Together, these entities represent 26 nations whose scientists are selected to staff IODP research expeditions conducted throughout the world's oceans. IODP expeditions are developed from hypothesis-driven science proposals aligned with the program's science plan Illuminating Earth's Past, Present, and Future. The science plan identifies 14 challenge questions in the four areas of climate change, deep life, planetary dynamics, and geohazards. Until 2013 under the name: International Ocean Drilling Program.
Content type(s)
IGETS is the International Geodynamics and Earth Tide Service of the International Association of Geodesy (IAG). The main objective of IGETS is to monitor temporal variations of the Earth gravity field through long‐term records from ground gravimeters, tiltmeters, strainmeters and other geodynamic sensors. IGETS continues the activities of the Global Geodynamics Project (GGP) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Furthermore, IGETS continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of gravimeters, tiltmeters, strainmeters and other geodynamic sensors. GFZ is the main Data Center and operates the IGETS data base of worldwide high precision SG records. EOST (Ecole et Observatoire des Sciences de la Terre, Strasbourg, France) is the secondary Data Center, The University of French Polynesia (Tahiti) and EOST (Strasbourg, France) are the two current Analysis Centers.
The Shuttle Radar Topography Mission, which flew aboard NASA's Space Shuttle Endeavour during an 11-day mission in 2000, made the first near-global topographical map of Earth, collecting data on nearly 80 percent of Earth's land surfaces. The instrument's design was essentially a modified version of the earlier Shuttle Imaging Radar instruments with a second antenna added to allow for topographic mapping using a technique similar to stereo photography.
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
IVS is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLB I) components. The service aspect of IVS is meant to serve both outside users and the geodetic and astrometric community itself. Both the contributors and users of data will be served.
Country
RESPECT aims to unveil for the mountain rain forest in South Ecuador how major ecosystem functions, (i) ecosystem biomass production, and (ii) water fluxes, are affected by ongoing and future environmental changes through alterations in response and effect traits of relevant biota. The research question is addressed with two approaches: (i) A newest generation Land Surface Model (LSM) and (ii) a statistical response–effect framework (REF). By including (i) specific Plant Functional Types (PFTs) for the megadiverse biodiversity hotspot, (ii) introducing trait diversity, (iii) new modules for tree hydraulics and (iv) new modules of focal biological processes (seed dispersal and PFT establishment, herbivory) we will conduct a biodiversification of LSMs.
The WDC has a FTP-server to distribute the PCN index derived from the geomagnetic observatory Qaanaaq (THL) and the Kp-index data products derived at the geomagnetic observatory Niemegk (NGK). The WDC is also holding extensive archives of magnetograms and other geomagnetic observatory data products that predate the introduction of digital data recording. The material is in analogue form such as film or microfiche. The Polar Cap index (abbreviation PC index) consists of the Polar Cap North (PCN) and the Polar Cap South (PCS) index, which are derived from magnetic measurements taken at the geomagnetic observatories Qaanaaq (THL, Greenland, +85o magnetic latitude) and Vostok (VOS, Antarctica, -83o magnetic latitude), respectively. The idea behind these indices is to estimate the intensity of anti-sunward plasma convection in the polar caps. This convection is associated with electric Hall currents and consequent magnetic field variations perpendicular to the antisunward plasma flow (and related Hall current) which can be monitored at the Qaanaaq and Vostok magnetic observatories. PC aims at monitoring the energy input from solar wind to the magnetosphere (loading activity). The index is constructed in such a way that it has a linear relationship with the merging Electric Field at the magnetopause; consequently PC is given in units of mV/m as for the electric field. In August 2013, the International Association of Geomagnetism and Aeronomy (IAGA) endorsed the PC index. The endorsed PC index is accessible at pcindex.org or through WDC Copenhagen.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.