Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
Country
As the national oceanographic data centre for Canada, MEDS maintains centralized repositories of some oceanographic data types collected in Canada, and coordinates data exchanges between DFO and recognized intergovernmental organizations, as well as acts as a central point for oceanographic data requests. Real-time, near real-time (for operational oceanography) or historical data are made available as appropriate.
Country
The arctic data archive system (ADS) collects observation data and modeling products obtained by various Japanese research projects and gives researchers to access the results. By centrally managing a wide variety of Arctic observation data, we promote the use of data across multiple disciplines. Researchers use these integrated databases to clarify the mechanisms of environmental change in the atmosphere, ocean, land-surface and cryosphere. That ADS will be provide an opportunity of collaboration between modelers and field scientists, can be expected.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
EOL’s platforms and instruments collect large and often unique data sets that must be validated, archived and made available to the research community. The goal of EOL data services is to advance science through delivering high-quality project data and metadata in ways that are as transparent, secure, and easily accessible as possible - today and into the future. By adhering to accepted standards in data formats and data services, EOL provides infrastructure to facilitate discovery and direct access to data and software from state-of-the-art commercial and locally-developed applications. EOL’s data services are committed to the highest standard of data stewardship from collection to validation to archival.
The Rolling Deck to Repository (R2R) Program provides a comprehensive shore-side data management program for a suite of routine underway geophysical, water column, and atmospheric sensor data collected on vessels of the academic research fleet. R2R also ensures data are submitted to the NOAA National Centers for Environmental Information for long-term preservation.
Data repository of a meteorological experiment conducted in Perdigão, Portugal between December 15, 2016 to June 15, 2017. The Perdigao field project is part of a larger joint US/European multi-year program in Portugal. The project is partially funded by the European Union (EU) ERANET+ to provide the wind energy sector with more detailed resource mapping capabilities in the form of a new digital EU wind atlas. A major goal of the Perdigão field project is to quantify errors of wind resource models against a benchmark dataset collected in complex terrain. The US participation will complement this activity by identifying physical and numerical weaknesses of models and developing new knowledge and methods to overcome such deficiencies.