Filter
Reset all

Subjects

Content Types

Countries

AID systems

Data access

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
>>>!!!<<< 2018-01-18: no data nor programs can be found >>>!!!<<< These archives contain public domain programs for calculations in physics and other programs that we suppose about will help during work with computer. Physical constants and experimental or theoretical data as cross sections, rate constants, swarm parameters, etc., that are necessary for physical calculations are stored here, too. Programs are mainly dedicated to computers compatible with PC IBM. If programs do not use graphic units it is possible to use them on other computers, too. It is necessary to reprogram the graphic parts of programs in the other cases.
Country
Welcome to our Atomic & Molecular Database in the Institute of Applied Physics and Computational Mathematics (IAPCM). The database is intended to collect, assess and compile atomic and molecular data for various elementary processes, and especially data needed in plasma simulation and diagnosis. Part data came from the old version of the SPECTR database(by A.Ya Faenov et al).
The EXFOR library contains an extensive compilation of experimental nuclear reaction data. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle and photon reactions have been covered less extensively.
Country
The CCC method yields accurate excitation and ionisation cross sections for atomic and ionic targets which are well-modelled by one or two valence electrons above a Hartree-Fock core. Inner core ionisation can be a major contributor to the total ionisation cross section. Such contributions can be estimated using various forms of Born-based approximations.