Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
Country
The repository is no longer available. <<<!!!<<< 2018-08-29: no more access to GAPHYOR >>>!!!>>> Important note: The database was no longer feeded with data or updated in the years 2005-2007. The financial support of the project had been stopped a few yers ahead that time. The maintainance of the IT system couldn't be ensured anymore and system was shutdown in 2015. Please see the other databases in the field.
The primary interaction of low-energy x rays within matter, viz. photoabsorption and coherent scattering, have been described for photon energies outside the absorption threshold regions. These tables are based on a compilation of the available experimental measurements and theoretical calculations. For many elements there is little or no published data and in such cases it was necessary to rely on theoretical calculations and interpolations across Z. In order to improve the accuracy in the future considerably more experimental measurements are needed.
The Joint Evaluated Fission and Fusion File (JEFF) project is a collaboration between NEA Data Bank member countries. The JEFF library combines the efforts of the JEFF and EFF/EAF Working Groups to produce a common sets of evaluated nuclear data, mainly for fission and fusion applications. It contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yields, and thermal scattering law data
Country
The TDB project aims to produce a database that: contains data for all the elements of interest in radioactive waste disposal systems; documents why and how the data were selected; gives recommendations based on original experimental data, rather than compilations and estimates; documents the sources of experimental data used; is internally consistent; and treats all solids and aqueous species of the elements of interest for nuclear waste storage performance assessment calculations. The database compiles formation data (Gibbs energies, enthalpies, entropies and heat capacities) for each aqueous species and solid phase of interest, as well as chemical reactions and their corresponding thermodynamic data. Non thermodynamic data (diffusion or kinetics) and sorption data are not considered in the TDB project.
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.
Numerical database of atomic and molecular processes and particle-surface interactions. ALADDIN has formatted data on atomic structure and spectra (energy levels,wave lengths, and transition probabilities); electron and heavy particle collisions with atoms, ions, and molecules (cross sections and/or rate coefficients, including, in most cases, analytic fit to the data); sputtering of surfaces by impact of main plasma constituents and self sputtering; particle reflection from surfaces; thermophysical and thermomechanical properties of beryllium and pyrolytic graphites.