Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 37 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
Country
The Marine Data Portal is a product of the “Underway”- Data initiative of the German Marine Research Alliance (Deutsche Allianz Meeresforschung - DAM) and is supported by the marine science centers AWI, GEOMAR and Hereon of the Helmholtz Association. This initiative aims to improve and standardize the systematic data collection and data evaluation for expeditions with German research vessels and marine observation. It supports scientists in their data management duties and fosters (data) science through FAIR and open access to marine research data. AWI, GEOMAR and Hereon develop this marine data hub (Marehub) to build a decentralized data infrastructure for processing, long-term archiving and dissemination of marine observation and model data and data products. The Marine Data Portal provides user-friendly, centralized access to marine research data, reports and publications from a wide range of data repositories and libraries in the context of German marine research and its international collaboration. The Marine Data Portal is developed by scientists for scientists in order to facilitate Findability and Access of marine research data for Reuse. It supports machine-readable and data driven science. Please note that the quality of the data may vary depending on the purpose for which it was originally collected.
Surface air temperature change is a primary measure of global climate change. The GISTEMP project started in the late 1970s to provide an estimate of the changing global surface air temperature which could be compared with the estimates obtained from climate models simulating the effect of changes in atmospheric carbon dioxide, volcanic aerosols, and solar irradiance. The continuing analysis updates global temperature change from the late 1800s to the present.
!!! <<< the repository is offline >>> !!! The CBIF provides primary data on biological species of interest to Canadians. CBIF supports a wide range of social and economic decisions including efforts to conserve our biodiversity in healthy ecosystems, use our biological resources in sustainable ways, and monitor and control pests and diseases. Tools provided by the CBIF include the Integrated Taxonomic Information System (ITIS), Species Access Network, Online Mapping, and the SpeciesBank, including Butterflies of Canada. The CBIF is a member of the Global Biodiversity Information Facility (GBIF).
GLOBE (Global Collaboration Engine) is an online collaborative environment that enables land change researchers to share, compare and integrate local and regional studies with global data to assess the global relevance of their work.
Country
The main objective of the Bolin Centre Database is to ensure the preservation, interoperability and open access of climate research data for members of the Bolin Centre for Climate Research. The Bolin Centre Database also provides expert advice and guidance on data management. The Bolin Centre itself is a multi-disciplinary consortium in Sweden that conducts research and graduate education related to the Earth´s climate, in collaboration between Stockholm University, The Swedish Meteorological and Hydrological Institute (SMHI) and the KTH Royal Institute of Technology.
IAGOS aims to provide long-term, regular and spatially resolved in situ observations of the atmospheric composition. The observation systems are deployed on a fleet of 10 to 15 commercial aircraft measuring atmospheric chemistry concentrations and meteorological fields. The IAGOS Data Centre manages and gives access to all the data produced within the project.
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
The Environmental Change Network is the UK’s long-term environmental monitoring and research (LTER) programme. We make regular measurements of plant and animal communities and their physical and chemical environment. Our long-term datasets are used to increase understanding of the effects of climate change, air pollution and other environmental pressures on UK ecosystems.
The TropFlux provides surface heat and momentum flux data of tropical oceans (30°N-30°S) between January 1979 and September 2011. The TropFlux data is produced under a collaboration between Laboratoire d’Océanographie: Expérimentation et Approches Numériques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India), and supported by Institut de Recherche pour le Développement (IRD, France). TropFlux relies on data provided by the ECMWF Re-Analysis interim (ERA-I) and ISCCP projects. Since 2014 located at Indian National Centre for Ocean Information Services.
Greenland Environmental Observatory (GEOSummit) provides long term year round data on core atmospheric measurements, spatial phenomena, ice sheets, and the Arctic Environment. These data are available to researchers through the National Science Foundation's Science Coordination Office (SCO) which coordinates all research at GEOSummit. Currently there is not a central platform for multi-collaborator data distribution. For specific information related to research it is recommended to contact investigators directly.
MEMENTO aims to become a valuable tool for identifying regions of the world ocean that should be targeted in future work to improve the quality of air-sea flux estimates.
AmeriFlux is a network of PI-managed sites measuring ecosystem CO2, water, and energy fluxes in North, Central and South America. It was established to connect research on field sites representing major climate and ecological biomes, including tundra, grasslands, savanna, crops, and conifer, deciduous, and tropical forests. As a grassroots, investigator-driven network, the AmeriFlux community has tailored instrumentation to suit each unique ecosystem. This “coalition of the willing” is diverse in its interests, use of technologies and collaborative approaches. As a result, the AmeriFlux Network continually pioneers new ground.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
Welcome to the home page of the Rutgers/New Jersey Geological and Water Survey Core Repository. We are an official repository of the International Ocean Discovery Program (IODP), hosting Legs 150X and 174AX onshore cores drilled as part of the NJ/Mid-Atlantic Transect, and the New Jersey Geological and Water Survey (NJGWS). Cores from other ODP/IODP repositories are available through ODP. In addition to ODP/IODP cores, we are the repository for: 1. 6668 m of Newark Basin Drilling Project Triassic cores (e.g., Olsen, Kent, et al. 1996) 2. More than 10,000 m of the Army Corps of Engineers Passaic Tunnel Project Triassic and Jurassic cores 3. 1947 m of core from the Chesapeake Bay Impact Structure Deep Hole 4. Cores obtained from the Northern North Atlantic as part of the IODP Expedition 303/306 5. Cores from various rift and drift basins on the eastern and Gulf Coasts of the U.S. 6. Geological samples from the New Jersey Geological and Water Survey (NJGWS) and United States Geological Survey (USGS) including 304 m of continuous NJGWS/USGS NJ coastal plain cores.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
CSDMS is a virtual home for a vibrant and growing community of about 1,000 international modeling experts and students who study the dynamic interactions of lithosphere, hydrosphere, cryosphere, and atmosphere at Earth’s surface. Participating in cross-disciplinary groups, members develop integrated software modules that predict the movement of water, sediment, and nutrients across landscapes and into the ocean. We share an open library of models, software, and access to high-performance computing. We also share knowledge that helps create higher-resolution simulations, often involving higher complexity algorithms. Together, we support the discovery, use, and conservation of natural resources; mitigation of natural hazards; geotechnical support of commercial and infrastructure development; environmental stewardship; and terrestrial surveillance for global security.
Under the World Climate Research Programme (WCRP) the Working Group on Coupled Modelling (WGCM) established the Coupled Model Intercomparison Project (CMIP) as a standard experimental protocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. This framework enables a diverse community of scientists to analyze GCMs in a systematic fashion, a process which serves to facilitate model improvement. Virtually the entire international climate modeling community has participated in this project since its inception in 1995. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) archives much of the CMIP data and provides other support for CMIP. We are now beginning the process towards the IPCC Fifth Assessment Report and with it the CMIP5 intercomparison activity. The CMIP5 (CMIP Phase 5) experiment design has been finalized with the following suites of experiments: I Decadal Hindcasts and Predictions simulations, II "long-term" simulations, III "atmosphere-only" (prescribed SST) simulations for especially computationally-demanding models. The new ESGF peer-to-peer (P2P) enterprise system (http://pcmdi9.llnl.gov) is now the official site for CMIP5 model output. The old gateway (http://pcmdi3.llnl.gov) is deprecated and now shut down permanently.