Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 22 result(s)
Climate4impact: a dedicated interface to ESGF for the climate impact community The portal Climate4impact, part of the ENES Data Infrastructure, provides access to data and quick looks of global and regional climate models and downscaled higher resolution climate data. The portal provides data transformation tooling and mapping & plotting capabilities, guidance, documentation, FAQ and examples. The Climate4Impact portal will be further developed during the IS-ENES3 project (2019-2023)and moved to a different environment. Meanwhile the portal at https://climate4impact.eu will remain available, but no new information or processing options will be included. When the new portal will become available this will be announced on https://is.enes.org/.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The WRDC, located at the Main Geophysical Observatory in St. Petersburg, Russia, processes solar radiation data currently submitted from more than 500 stations located in 56 countries and operates an archive with more than 1200 stations listed in its catalogue. The WRDC is the central depository of the measured components such as: global, diffuse and direct solar radiation, downward atmospheric radiation, net total and terrestrial surface radiation (upward), spectral radiation components (instantaneous fluxes), and sunshine duration, on hourly, daily or monthly basis.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
The Space Physics Data Facility (SPDF) leads in the design and implementation of unique multi-mission and multi-disciplinary data services and software to strategically advance NASA's solar-terrestrial program, to extend our science understanding of the structure, physics and dynamics of the Heliosphere of our Sun and to support the science missions of NASA's Heliophysics Great Observatory. Major SPDF efforts include multi-mission data services such as Heliophysics Data Portal (formerly VSPO), CDAWeb and CDAWeb Inside IDL,and OMNIWeb Plus (including COHOWeb, ATMOWeb, HelioWeb and CGM) , science planning and orbit services such as SSCWeb, data tools such as the CDF software and tools, and a range of other science and technology research efforts. The staff supporting SPDF includes scientists and information technology experts.
The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is a publicly accessible earth science data repository created to curate, publicly serve (publish), and archive digital data and information from biological, chemical and biogeochemical research conducted in coastal, marine, great lakes and laboratory environments. The BCO-DMO repository works closely with investigators funded through the NSF OCE Division’s Biological and Chemical Sections and the Division of Polar Programs Antarctic Organisms & Ecosystems. The office provides services that span the full data life cycle, from data management planning support and DOI creation, to archive with appropriate national facilities.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
Vast networks of meteorological sensors ring the globe measuring atmospheric state variables, like temperature, humidity, wind speed, rainfall, and atmospheric carbon dioxide, on a continuous basis. These measurements serve earth system science by providing inputs into models that predict weather, climate and the cycling of carbon and water. And, they provide information that allows researchers to detect the trends in climate, greenhouse gases, and air pollution. The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace gases between ecosystems and atmosphere.
The main goal of the ECCAD project is to provide scientific and policy users with datasets of surface emissions of atmospheric compounds, and ancillary data, i.e. data required to estimate or quantify surface emissions. The supply of ancillary data - such as maps of population density, maps of fires spots, burnt areas, land cover - could help improve and encourage the development of new emissions datasets. ECCAD offers: Access to global and regional emission inventories and ancillary data, in a standardized format Quick visualization of emission and ancillary data Rationalization of the use of input data in algorithms or emission models Analysis and comparison of emissions datasets and ancillary data Tools for the evaluation of emissions and ancillary data ECCAD is a dynamical and interactive database, providing the most up to date datasets including data used within ongoing projects. Users are welcome to add their own datasets, or have their regional masks included in order to use ECCAD tools.
<<<!!!<<< December 2015: The All-Russia Research Institute of Hydrometeorological Information – World Data Centre (RIHMI-WDC) has closed down WDC – Rockets, Satellites and Earth Rotation (WDC – RSER) since the topics are no longer its priorities >>>!!!>>>. However, the WDS-SC is extremely pleased to learn that the data holdings of WDC – RSER have now become part of the collection of WDC – Meteorology, Obninsk (WDS Regular Member). The World Data Centre for Rockets, Satellite and Rotation of the Earth is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. Data are available from RIHMI-WDC site
OceanSITES is a worldwide system of long-term, deepwater reference stations measuring dozens of variables and monitoring the full depth of the ocean from air-sea interactions down to 5,000 meters. Since 1999, the international OceanSITES science team has shared both data and costs in order to capitalize on the enormous potential of these moorings. The growing network now consists of about 30 surface and 30 subsurface arrays. Satellite telemetry enables near real-time access to OceanSITES data by scientists and the public. OceanSITES moorings are an integral part of the Global Ocean Observing System. They complement satellite imagery and ARGO float data by adding the dimensions of time and depth.
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for processing, archiving, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry.The ASDC specializes in atmospheric data important to understanding the causes and processes of global climate change and the consequences of human activities on the climate.
Country
The Climate Change Centre Austria - Data Centre provides the central national archive for climate data and information. The data made accessible includes observation and measurement data, scenario data, quantitative and qualitative data, as well as the measurement data and findings of research projects.
The purpose of the Dataset Catalogue is to enhance discovery of GNS Science datasets. At a minimum, users will be able to determine whether a dataset on a specific topic exists and then whether it pertains to a specific place and/or a specific date or period. Some datasets include a web link to an online resource. In addition, contact details are provided for the custodian of each dataset as well as conditions of use.
CARIBIC is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. We deploy an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. We use an Airbus A340-600 from Lufthansa since December 2004.
Content type(s)
The World Data Centre for Aerosols (WDCA) is the data repository and archive for microphysical, optical, and chemical properties of atmospheric aerosol of the World Meteorological Organisation's (WMO) Global Atmosphere Watch (GAW) programme. The goal of the Global Atmosphere Watch (GAW) programme is to ensure long-term measurements in order to detect trends in global distributions of chemical constituents in air and the reasons for them. With respect to aerosols, the objective of GAW is to determine the spatio-temporal distribution of aerosol properties related to climate forcing and air quality on multi-decadal time scales and on regional, hemispheric and global spatial scales.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The NSIDC Distributed Active Archive Center (DAAC) processes, archives, documents, and distributes data from NASA's past and current Earth Observing System (EOS) satellites and field measurement programs. The NSIDC DAAC focuses on the study of the cryosphere. The NSIDC DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) Data Centers.