Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 28 result(s)
SeaBASS, the publicly shared archive of in situ oceanographic and atmospheric data maintained by the NASA Ocean Biology Processing Group (OBPG). High quality in situ measurements are prerequisite for satellite data product validation, algorithm development, and many climate-related inquiries. As such, the NASA Ocean Biology Processing Group (OBPG) maintains a local repository of in situ oceanographic and atmospheric data to support their regular scientific analyses. The SeaWiFS Project originally developed this system, SeaBASS, to catalog radiometric and phytoplankton pigment data used their calibration and validation activities. To facilitate the assembly of a global data set, SeaBASS was expanded with oceanographic and atmospheric data collected by participants in the SIMBIOS Program, under NASA Research Announcements NRA-96 and NRA-99, which has aided considerably in minimizing spatial bias and maximizing data acquisition rates. Archived data include measurements of apparent and inherent optical properties, phytoplankton pigment concentrations, and other related oceanographic and atmospheric data, such as water temperature, salinity, stimulated fluorescence, and aerosol optical thickness. Data are collected using a number of different instrument packages, such as profilers, buoys, and hand-held instruments, and manufacturers on a variety of platforms, including ships and moorings.
The Objectively Analyzed air-sea Fluxes (OAFlux) project is a research and development project focusing on global air-sea heat, moisture, and momentum fluxes. The project is committed to produce high-quality, long-term, global ocean surface forcing datasets from the late 1950s to the present to serve the needs of the ocean and climate communities on the characterization, attribution, modeling, and understanding of variability and long-term change in the atmosphere and the oceans.
Search and access 201 data sets covering the Atmosphere, Ocean, Land and more. Explore climate indices, reanalyses and satellite data and understand their application to climate model metrics. This is the only data portal that combines data discovery, metadata, figures and world-class expertise on the strengths, limitations and applications of climate data.
Climate Data Record (CDR) is a time series of measurements of sufficient length, consistency and continuity to determine climate variability and change. The fundamental CDRs include sensor data, such as calibrated radiances and brightness temperatures, that scientists have improved and quality-controlled along with the data used to calibrate them. The thematic CDRs include geophysical variables derived from the fundamental CDRs, such as sea surface temperature and sea ice concentration, and they are specific to various disciplines.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
NCEP delivers national and global weather, water, climate and space weather guidance, forecasts, warnings and analyses to its Partners and External User Communities. The National Centers for Environmental Prediction (NCEP), an arm of the NOAA's National Weather Service (NWS), is comprised of nine distinct Centers, and the Office of the Director, which provide a wide variety of national and international weather guidance products to National Weather Service field offices, government agencies, emergency managers, private sector meteorologists, and meteorological organizations and societies throughout the world. NCEP is a critical national resource in national and global weather prediction. NCEP is the starting point for nearly all weather forecasts in the United States. The Centers are: Aviation Weather Center (AWC), Climate Prediction Center (CPC), Environmental Modeling Center (EMC), NCEP Central Operations (NCO), National Hurricane Center (NHC), Ocean Prediction Center (OPC), Storm Prediction Center (SPC), Space Weather Prediction Center (SWPC), Weather Prediction Center (WPC)
GLOBE (Global Collaboration Engine) is an online collaborative environment that enables land change researchers to share, compare and integrate local and regional studies with global data to assess the global relevance of their work.
To understand the global surface energy budget is to understand climate. Because it is impractical to cover the earth with monitoring stations, the answer to global coverage lies in reliable satellite-based estimates. Efforts are underway at NASA and universities to develop algorithms to do this, but such projects are in their infancy. In concert with these ambitious efforts, accurate and precise ground-based measurements in differing climatic regions are essential to refine and verify the satellite-based estimates, as well as to support specialized research. To fill this niche, the Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs.
CDAAC is responsible for processing the science data received from COSMIC. This data is currently being processed not long after the data is received, i.e. approximately eighty percent of radio occultation profiles are delivered to operational weather centers within 3 hours of observation as well as in a more accurate post-processed mode (within 8 weeks of observation).
As one of the cornerstones of the U.S. Geological Survey's (USGS) National Geospatial Program, The National Map is a collaborative effort among the USGS and other Federal, State, and local partners to improve and deliver topographic information for the Nation. It has many uses ranging from recreation to scientific analysis to emergency response. The National Map is easily accessible for display on the Web, as products and services, and as downloadable data. The geographic information available from The National Map includes orthoimagery (aerial photographs), elevation, geographic names, hydrography, boundaries, transportation, structures, and land cover. Other types of geographic information can be added within the viewer or brought in with The National Map data into a Geographic Information System to create specific types of maps or map views.
AmeriFlux is a network of PI-managed sites measuring ecosystem CO2, water, and energy fluxes in North, Central and South America. It was established to connect research on field sites representing major climate and ecological biomes, including tundra, grasslands, savanna, crops, and conifer, deciduous, and tropical forests. As a grassroots, investigator-driven network, the AmeriFlux community has tailored instrumentation to suit each unique ecosystem. This “coalition of the willing” is diverse in its interests, use of technologies and collaborative approaches. As a result, the AmeriFlux Network continually pioneers new ground.
The California Coastal Atlas is an experiment in the creation of a new information resource for the description, analysis and understanding of natural and human processes affecting the coast of California.
Welcome to the home page of the Rutgers/New Jersey Geological and Water Survey Core Repository. We are an official repository of the International Ocean Discovery Program (IODP), hosting Legs 150X and 174AX onshore cores drilled as part of the NJ/Mid-Atlantic Transect, and the New Jersey Geological and Water Survey (NJGWS). Cores from other ODP/IODP repositories are available through ODP. In addition to ODP/IODP cores, we are the repository for: 1. 6668 m of Newark Basin Drilling Project Triassic cores (e.g., Olsen, Kent, et al. 1996) 2. More than 10,000 m of the Army Corps of Engineers Passaic Tunnel Project Triassic and Jurassic cores 3. 1947 m of core from the Chesapeake Bay Impact Structure Deep Hole 4. Cores obtained from the Northern North Atlantic as part of the IODP Expedition 303/306 5. Cores from various rift and drift basins on the eastern and Gulf Coasts of the U.S. 6. Geological samples from the New Jersey Geological and Water Survey (NJGWS) and United States Geological Survey (USGS) including 304 m of continuous NJGWS/USGS NJ coastal plain cores.
The NCEP/NCAR Reanalysis Project is a joint project between the National Centers for Environmental Prediction (NCEP, formerly "NMC") and the National Center for Atmospheric Research (NCAR). The goal of this joint effort is to produce new atmospheric analyses using historical data (1948 onwards) and as well to produce analyses of the current atmospheric state (Climate Data Assimilation System, CDAS).
OceanSITES is a worldwide system of long-term, deepwater reference stations measuring dozens of variables and monitoring the full depth of the ocean from air-sea interactions down to 5,000 meters. Since 1999, the international OceanSITES science team has shared both data and costs in order to capitalize on the enormous potential of these moorings. The growing network now consists of about 30 surface and 30 subsurface arrays. Satellite telemetry enables near real-time access to OceanSITES data by scientists and the public. OceanSITES moorings are an integral part of the Global Ocean Observing System. They complement satellite imagery and ARGO float data by adding the dimensions of time and depth.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
The NCAR Climate Data Gateway provides data discovery and access services for global and regional climate model data, knowledge, and software. The NCAR Climate Data Gateway supports community access to data products from many of NCAR's community modeling efforts, including the IPCC, PCM, AMPS, CESM, NARCCAP, and NMME activities. Data products are generally open and available, however, download access may require a login.
Argo is an international programme using autonomous floats to collect temperature, salinity and current data in the ice-free oceans. It is teamed with the Jason ocean satellite series. Argo will soon reach its target of 3000 floats delivering data within 24 hours to researchers and operational centres worldwide. 23 countries contribute floats to Argo and many others help with float deployments. Argo has revolutionized the collection of information from inside the oceans. ARGO Project is organized in regional and national Centers with a Project Office, an Information Center (AIC) and 2 Global Data Centers (GDAC), at the United States and at France. Each DAC submits regularly all its new files to both USGODAE and Coriolis GDACs.The whole Argo data set is available in real time and delayed mode from the global data centres (GDACs). The internet addresses are: https://nrlgodae1.nrlmry.navy.mil/ and http://www.argodatamgt.org
The Data Library and Archives (DLA) is part of the joint library system supported by the Marine Biological Laboratory and the Woods Hole Oceanographic Institution. The DLA holds collections of administrative records, photographs, scientists' data and papers, film and video, historical instruments, as well as books, journals and technical reports.
WHOI is the world's leading non-profit oceanographic research organization. WHOI maintains unparalleled depth and breadth of expertise across a range of oceanographic research areas. Institution scientists and engineers work collaboratively within and across six research departments to advance knowledge of the global ocean and its fundamental importance to other planetary systems. At the same time, they also train future generations of ocean scientists and address problems that have a direct impact in efforts to understand and manage critical marine resources.
<<<!!!<<< This repository is no longer available. >>>!!!>>> In 2016, NSIDC partnered with the United States Antarctic Program - Data Center (USAP-DC) at Columbia University to consolidate NSF glaciology data into a central USAP Project Catalog and a Data Repository for research datasets derived from these projects. From 2016 to 2018, the AGDC data sets were transferred to USAP-DC. All AGDC data previously archived with NSIDC are now available via the USAP-DC https://www.re3data.org/repository/r3d100010660.
The NOAA/ESRL Physical Sciences Division (PSD) conducts weather and climate research to observe and understand Earth's physical environment, and to improve weather and climate predictions on global-to-local scales. PSD archives a wide range of data ranging from gridded climate datasets extending hundreds of years to real-time wind profiler data at a single location. The data or products derived from this data, organized by type, are available to scientists and the general public .
US Department of Energy’s Atmospheric Radiation Measurement (ARM) Data Center is a long-term archive and distribution facility for various ground-based, aerial and model data products in support of atmospheric and climate research. ARM facility currently operates over 400 instruments at various observatories (https://www.arm.gov/capabilities/observatories/). ARM Data Center (ADC) Archive currently holds over 11,000 data products with a total holding of over 3 petabytes of data that dates back to 1993, these include data from instruments, value added products, model outputs, field campaign and PI contributed data. The data center archive also includes data collected by ARM from related program (e.g., external data such as NASA satellite).
EOL’s platforms and instruments collect large and often unique data sets that must be validated, archived and made available to the research community. The goal of EOL data services is to advance science through delivering high-quality project data and metadata in ways that are as transparent, secure, and easily accessible as possible - today and into the future. By adhering to accepted standards in data formats and data services, EOL provides infrastructure to facilitate discovery and direct access to data and software from state-of-the-art commercial and locally-developed applications. EOL’s data services are committed to the highest standard of data stewardship from collection to validation to archival.