Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 6 result(s)
We are a leading international centre for genomics and bioinformatics research. Our mandate is to advance knowledge about cancer and other diseases, to improve human health through disease prevention, diagnosis and therapeutic approaches, and to realize the social and economic benefits of genomics research.
Content type(s)
Country
<<<!!!<<< This product is in the archive and is no longer current. >>>!!!>>> Biobanks are a key prerequisite for modern medical research. By linking samples and clinical data they make it possible to clarify the causes and the course of diseases. The German Biobank Registry pools the medically relevant biobanks in Germany. The German Biobank Registry provides an overview of the medical biobanks in Germany; increases the international visibility of German biobanks; facilitates the networking of biobanks; promotes an exchange of information and samples between research teams; supports the use of existing resources; provides information for investments in biobanks and promotes transparency and trust in research where human samples are used. Searching for samples in all biobanks is possible at the project portal (P2B2) https://p2b2.fraunhofer.de/ after registration.
Country
KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies
MetabolomeXchange.org delivers the mechanisms needed for disseminating the data to the metabolomics community at large (both metabolomics researchers and databases). The main objective is to make it easier for metabolomics researchers to become aware of newly released, publicly available, metabolomics datasets that may be useful for their research. MetabolomeXchange contains datasets from different data providers: MetaboLights, Metabolomic Repository Bordeaux, Metabolomics Workbench, and Metabolonote
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
With the creation of the Metabolomics Data Repository managed by Data Repository and Coordination Center (DRCC), the NIH acknowledges the importance of data sharing for metabolomics. Metabolomics represents the systematic study of low molecular weight molecules found in a biological sample, providing a "snapshot" of the current and actual state of the cell or organism at a specific point in time. Thus, the metabolome represents the functional activity of biological systems. As with other ‘omics’, metabolites are conserved across animals, plants and microbial species, facilitating the extrapolation of research findings in laboratory animals to humans. Common technologies for measuring the metabolome include mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), which can measure hundreds to thousands of unique chemical entities. Data sharing in metabolomics will include primary raw data and the biological and analytical meta-data necessary to interpret these data. Through cooperation between investigators, metabolomics laboratories and data coordinating centers, these data sets should provide a rich resource for the research community to enhance preclinical, clinical and translational research.