Filter
Reset all

Subjects

Content Types

Countries

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
>>>!!!<<< SMD has been retired. After approximately fifteen years of microarray-centric research service, the Stanford Microarray Database has been retired. We apologize for any inconvenience; please read below for possible resolutions to your queries. If you are looking for any raw data that was directly linked to SMD from a manuscript, please search one of the public repositories. NCBI Gene Expression Omnibus EBI ArrayExpress All published data were previously communicated to one (or both) of the public repositories. Alternatively, data for publications between 1997 and 2004 were likely migrated to the Princeton University MicroArray Database, and are accessible there. If you are looking for a manuscript supplement (i.e. from a domain other than smd.stanford.edu), perhaps try searching the Internet Archive: Wayback Machine https://archive.org/web/ . >>>!!!<<< The Stanford Microarray Database (SMD) is a DNA microarray research database that provides a large amount of data for public use.
Country
DEG hosts records of currently available essential genomic elements, such as protein-coding genes and non-coding RNAs, among bacteria, archaea and eukaryotes. Essential genes in a bacterium constitute a minimal genome, forming a set of functional modules, which play key roles in the emerging field, synthetic biology.
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Country
GBIF is an international organisation that is working to make the world's biodiversity data accessible everywhere in the world. GBIF and its many partners work to mobilize the data, and to improve search mechanisms, data and metadata standards, web services, and the other components of an Internet-based information infrastructure for biodiversity. GBIF makes available data that are shared by hundreds of data publishers from around the world. These data are shared according to the GBIF Data Use Agreement, which includes the provision that users of any data accessed through or retrieved via the GBIF Portal will always give credit to the original data publishers.
OrtholugeDB contains Ortholuge-based orthology predictions for completely sequenced bacterial and archaeal genomes. It is also a resource for reciprocal best BLAST-based ortholog predictions, in-paralog predictions (recently duplicated genes) and ortholog groups in Bacteria and Archaea. The Ortholuge method improves the specificity of high-throughput orthology prediction.
>>>!!!<<< as stated 2017-06-09 MPIDB is no longer available under URL http://www.jcvi.org/mpidb/about.php >>>!!!<<< The microbial protein interaction database (MPIDB) aims to collect and provide all known physical microbial interactions. Currently, 24,295 experimentally determined interactions among proteins of 250 bacterial species/strains can be browsed and downloaded. These microbial interactions have been manually curated from the literature or imported from other databases (IntAct, DIP, BIND, MINT) and are linked to 26,578 experimental evidences (PubMed ID, PSI-MI methods). In contrast to these databases, interactions in MPIDB are further supported by 68,346 additional evidences based on interaction conservation, protein complex membership, and 3D domain contacts (iPfam, 3did). We do not include (spoke/matrix) binary interactions infered from pull-down experiments.
>>>!!!Bacterial (BCSDB) and Plant&Fungal (PFCSDB) carbohydrate structure databases have been merged into a single database, CSDB!!!<<< BCSDB database is aimed at provision of structural, bibliographic, taxonomic and related information on bacterial carbohydrate structures. Two key points of this service are: covering - is above 90% in the scope of bacterial carbohydrates. This means the negative search answer remains valuable scientific information. And consistence - we manually check the data, and aim at hight quality error-free content. The main source of data is a retrospective literature analysis. About 25% of data were imported from CCSD (Carbbank, ceased in 1997, University of Georgia, Athens; structures published before 1995) with subsequent manual curation and approval. Current coverage is displayed in red on the top of the left menu. The time lag between publication of new data and their deposition ~ 1 year. The scope is "bacterial carbohydrates" and covers nearly all structures of this class published up to 2016. Bacterial means that a structure has been found in bacteria or obtained by modification of those found in bacteria. Carohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds, in which at least one residue is a sugar or its derivative.
Pathogen Portal is a repository linking to the Bioinformatics Resource Centers (BRCs) sponsored by the National Institute of Allergy and Infectious Diseases (NIAID) and maintained by The Virginia Bioinformatics Institute. The BRCs are providing web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases. The Pathogen Portal supports and links to five Bioinformatics Resource Centers (BRCs). Each BRC specializes in a different group of pathogens, focusing on, but not limited to, pathogens causing (Re-)Emerging Infectious Diseases, and those in the NIAID Category A-C Priority Pathogen lists for biodefense research. The scope of the BRCs also includes Invertebrate Vectors of Human Disease. Pathogen Portal covers EuPathDB, IRD, PATRIC, VectorBase and ViPR.
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.