Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 287 result(s)
The MGDS Academic Seismic Portal at Lamont-Doherty Earth Observatory (ASP-LDEO), now part of the IEDA Data Facility, was initiated in 2003 to preserve and provide open access to multi-channel seismic (MCS) and single channel seismic (SCS) field data collected for academic research supported by the US National Science Foundation. Multi-channel data are primarily from the marine seismic vessels operated by Lamont-Doherty Earth Observatory of Columbia University. Modern single channel seismic data from other vessels including the R/V Palmer and USCG Healy, as well as data from portable seismic systems, are also served. The development of the Academic Seismic Portal has focused on the need to recover high value MCS data from older surveys as well as to establish sustainable procedures for preservation of data from modern programs. During the final two years of R/V Ewing operations, procedures were established for routine transfer of MCS data along with navigation and acquisition parameters, and other needed documentation to the ASP. Transfer of seismic data and acquisition information is now routine for the National Marine Seismic Facility, the R/V Marcus G. Langseth, which began science operations in February 2008. Data are documented and incorporated into the data system with full access restrictions protecting the scientists' rights to exclusive access during the proprietary hold period. Submission of data to the ASP helps ensure that NSF requirements for data sharing as outlined in the NSF OCE Data Policy are satisfied. Data from the Academic Seismic Portal at UTIG has been migrated to LDEO. As we continue to verify the accuracy and completeness of this data, there may be temporary issues with some seismic metadata and web services.
>>>!!!<<< On June 1, 2020, the Academic Seismic Portal repositories at UTIG were merged into a single collection hosted at Lamont-Doherty Earth Observatory. Content here was removed July 1, 2020. Visit the Academic Seismic Portal @LDEO! https://www.marine-geo.org/collections/#!/collection/Seismic#summary (https://www.re3data.org/repository/r3d100010644) >>>!!!<<<
The ACTRIS DC is designed to assist scientists with discovering and accessing atmospheric data and contains an up-to-date catalogue of available datasets in a number of databases distributed throughout the world. A site like this can never be complete, but we have aimed at including datasets from the most relevant databases to the ACTRIS project, also building on the work and experiences achieved in the EU FP6 research project Global Earth Observation and Monitoring. The focus of the web portal is validated data, but it is also possible to browse the ACTRIS data server for preliminary data (rapid delivery data) through this site. The web site allows you to search in a local metadata catalogue that contains information on actual datasets that are archived in external archives. It is set up so that you can search for data by selecting the chemical/physical variable, the data location, the database that holds the data, the type of data, the data acquisition platform, and the data matrix
Country
The arctic data archive system (ADS) collects observation data and modeling products obtained by various Japanese research projects and gives researchers to access the results. By centrally managing a wide variety of Arctic observation data, we promote the use of data across multiple disciplines. Researchers use these integrated databases to clarify the mechanisms of environmental change in the atmosphere, ocean, land-surface and cryosphere. That ADS will be provide an opportunity of collaboration between modelers and field scientists, can be expected.
>>>>!!!<<<<As of March 28, 2016, the 'NSF Arctic Data Center' will serve as the current repository for NSF-funded Arctic data. The ACADIS Gateway http://www.aoncadis.org is no longer accepting data submissions. All data and metadata in the ACADIS system have been transferred to the NSF Arctic Data Center system. There is no need for you to resubmit existing data. >>>>!!!<<<< ACADIS is a repository for Arctic research data to provide data archival, preservation and access for all projects funded by NSF's Arctic Science Program (ARC). Data include long-term observational timeseries, local, regional, and system-scale research from many diverse domains. The Advanced Cooperative Arctic Data and Information Service (ACADIS) program includes data management services.
The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire; Univ. of Lille 1, CNES, and CNRS-INSU) and is greatly expanded by networks (e.g., RIMA, AeroSpan, AEROCAN, and CARSNET) and collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, microphysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution.
The Alvin Frame-Grabber system provides the NDSF community on-line access to Alvin's video imagery co-registered with vehicle navigation and attitude data for shipboard analysis, planning deep submergence research cruises, and synoptic review of data post-cruise. The system is built upon the methodology and technology developed for the JasonII Virtual Control Van and a prototype system that was deployed on 13 Alvin dives in the East Pacific Rise and the Galapagos (AT7-12, AT7-13). The deployed prototype system was extremely valuable in facilitating real-time dive planning, review, and shipboard analysis.
AmeriFlux is a network of PI-managed sites measuring ecosystem CO2, water, and energy fluxes in North, Central and South America. It was established to connect research on field sites representing major climate and ecological biomes, including tundra, grasslands, savanna, crops, and conifer, deciduous, and tropical forests. As a grassroots, investigator-driven network, the AmeriFlux community has tailored instrumentation to suit each unique ecosystem. This “coalition of the willing” is diverse in its interests, use of technologies and collaborative approaches. As a result, the AmeriFlux Network continually pioneers new ground.
The Antarctic and Southern Ocean Data Portal, part of the US Antarctic Data Consortium, provides access to geoscience data, primarily marine, from the Antarctic region. The synthesis began in 2003 as the Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) with a focus on multibeam bathymetry field data and other geophysical data from the Southern Ocean collected with the R/V N. B. Palmer. In 2005, the effort was expanded to include all routine underway geophysical and oceanographic data collected with both the R/V N. B. Palmer and R/V L. Gould, the two primary research vessels serving the US Antarctic Program.
<<<!!!<<< This repository is no longer available. >>>!!!>>> In 2016, NSIDC partnered with the United States Antarctic Program - Data Center (USAP-DC) at Columbia University to consolidate NSF glaciology data into a central USAP Project Catalog and a Data Repository for research datasets derived from these projects. From 2016 to 2018, the AGDC data sets were transferred to USAP-DC. All AGDC data previously archived with NSIDC are now available via the USAP-DC https://www.re3data.org/repository/r3d100010660.
The Antarctic Research Facility is a national repository for geological materials collected in polar regions. The Facility houses the largest such Southern Ocean collection in the world. These materials have been acquired from over 90 USAP research vessel cruises.
US Department of Energy’s Atmospheric Radiation Measurement (ARM) Data Center is a long-term archive and distribution facility for various ground-based, aerial and model data products in support of atmospheric and climate research. ARM facility currently operates over 400 instruments at various observatories (https://www.arm.gov/capabilities/observatories/). ARM Data Center (ADC) Archive currently holds over 11,000 data products with a total holding of over 3 petabytes of data that dates back to 1993, these include data from instruments, value added products, model outputs, field campaign and PI contributed data. The data center archive also includes data collected by ARM from related program (e.g., external data such as NASA satellite).
Country
The Atlantic Canada Conservation Data Centre (ACCDC) maintains comprehensive lists of plant and animal species. The Atlantic CDC has geo-located records of species occurrences and records of extremely rare to uncommon species in the Atlantic region, including New Brunswick, Nova Scotia, Prince Edward Island, Newfoundland, and Labrador. The Atlantic CDC also maintains biological and other types of data in a variety of linked databases.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
AIRS moves climate research and weather prediction into the 21st century. AIRS is one of six instruments on board the Aqua satellite, part of the NASA Earth Observing System. AIRS along with its partner microwave instrument the Advanced Microwave Sounding Unit AMSU-A, represents the most advanced atmospheric sounding system ever deployed in space. Together these instruments observe the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases.
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for processing, archiving, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry.The ASDC specializes in atmospheric data important to understanding the causes and processes of global climate change and the consequences of human activities on the climate.
Country
Australian Ocean Data Network (AODN) provides data collected by the Australian marine community. AODN's data is searchable via map interface and metadata catalogue. AODN is Australia's exhaustive repository for marine and climate data. AODN has merged with IMOS eMarine Information Infrastructure (eMII) Facility in May 2016. IMOS is a multi-institutional collaboration with a focus on open data access. It is ideally placed to manage the AODN on behalf of the Australian marine and climate community.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Antarctic marine and terrestrial biodiversity data is widely scattered, patchy and often not readily accessible. In many cases the data is in danger of being irretrievably lost. Biodiversity.aq establishes and supports a distributed system of interoperable databases, giving easy access through a single internet portal to a set of resources relevant to research, conservation and management pertaining to Antarctic biodiversity. biodiversity.aq provides access to both marine and terrestrial Antarctic biodiversity data.
The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is a publicly accessible earth science data repository created to curate, publicly serve (publish), and archive digital data and information from biological, chemical and biogeochemical research conducted in coastal, marine, great lakes and laboratory environments. The BCO-DMO repository works closely with investigators funded through the NSF OCE Division’s Biological and Chemical Sections and the Division of Polar Programs Antarctic Organisms & Ecosystems. The office provides services that span the full data life cycle, from data management planning support and DOI creation, to archive with appropriate national facilities.
Country
BLLAST is a research programme aimed at exploring the late afternoon transition of the atmospheric boundary layer. The late afternoon period of the diurnal cycle of the boundary layer is poorly understood. This is yet an important transition period that impacts the transport and dillution of water vapour and trace species. The main questions adressed by the project are: - How the turbulence activity fades when heating by the surface decreases? - What is the impact on the transport of chemical species? - How relevant processes can be represented in numerical models? To answer all these questions, a field campaign was carried out during the summer of 2011 (from June 14 to July 8). Many observation systems were then deployed and operated by research teams coming from France and abroad. They were spanning a large spectrum of space and time scales in order to achieve a comprehensive description of the boundary layer processes. The observation strategy consisted in intensifying the operations in the late afternoon with tethered balloons, resarch aircrafts and UAVs.