Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 20 result(s)
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
A database for plant breeders and researchers to combine, visualize, and interrogate the wealth of phenotype and genotype data generated by the Triticeae Coordinated Agricultural Project (TCAP).
ArrayExpress is one of the major international repositories for high-throughput functional genomics data from both microarray and high-throughput sequencing studies, many of which are supported by peer-reviewed publications. Data sets are submitted directly to ArrayExpress and curated by a team of specialist biological curators. In the past (until 2018) datasets from the NCBI Gene Expression Omnibus database were imported on a weekly basis. Data is collected to MIAME and MINSEQE standards.
Funded by the National Science Foundation (NSF) and proudly operated by Battelle, the National Ecological Observatory Network (NEON) program provides open, continental-scale data across the United States that characterize and quantify complex, rapidly changing ecological processes. The Observatory’s comprehensive design supports greater understanding of ecological change and enables forecasting of future ecological conditions. NEON collects and processes data from field sites located across the continental U.S., Puerto Rico, and Hawaii over a 30-year timeframe. NEON provides free and open data that characterize plants, animals, soil, nutrients, freshwater, and the atmosphere. These data may be combined with external datasets or data collected by individual researchers to support the study of continental-scale ecological change.
<<<!!!<<< This site is no longer maintained and is provided for reference only. Some functionality or links may not work. For all enquiries please contact the Ensembl Helpdesk http://www.ensembl.org/Help/Contact >>>!!!>>> PhytoPath is a new bioinformatics resource that integrates genome-scale data from important plant pathogen species with literature-curated information about the phenotypes of host infection. Using the Ensembl Genomes browser, it provides access to complete genome assembly and gene models of priority crop and model-fungal, oomycete and bacterial phytopathogens. PhytoPath also links genes to disease progression using data from the curated PHI-base resource. PhytoPath portal is a joint project bringing together Ensembl Genomes with PHI-base, a community-curated resource describing the role of genes in pathogenic infection. PhytoPath provides access to genomic and phentoypic data from fungal and oomycete plant pathogens, and has enabled a considerable increase in the coverage of phytopathogen genomes in Ensembl Fungi and Ensembl Protists. PhytoPath also provides enhanced searching of the PHI-base resource as well as the fungi and protists in Ensembl Genomes.
The KNB Data Repository is an international repository intended to facilitate ecological, environmental and earth science research in the broadest senses. For scientists, the KNB Data Repository is an efficient way to share, discover, access and interpret complex ecological, environmental, earth science, and sociological data and the software used to create and manage those data. Due to rich contextual information provided with data in the KNB, scientists are able to integrate and analyze data with less effort. The data originate from a highly-distributed set of field stations, laboratories, research sites, and individual researchers. The KNB supports rich, detailed metadata to promote data discovery as well as automated and manual integration of data into new projects. The KNB supports a rich set of modern repository services, including the ability to assign Digital Object Identifiers (DOIs) so data sets can be confidently referenced in any publication, the ability to track the versions of datasets as they evolve through time, and metadata to establish the provenance relationships between source and derived data.
The Department of Energy Systems Biology Knowledgebase (KBase) is a software and data platform designed to meet the grand challenge of systems biology: predicting and designing biological function. KBase integrates data and tools in a unified graphical interface so users do not need to access them from numerous sources or learn multiple systems in order to create and run sophisticated systems biology workflows. Users can perform large-scale analyses and combine multiple lines of evidence to model plant and microbial physiology and community dynamics. KBase is the first large-scale bioinformatics system that enables users to upload their own data, analyze it (along with collaborator and public data), build increasingly realistic models, and share and publish their workflows and conclusions. KBase aims to provide a knowledgebase: an integrated environment where knowledge and insights are created and multiplied.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
Here you will find authoritative taxonomic information on plants, animals, fungi, and microbes of North America and the world.
The DNA Bank Network was established in spring 2007 and was funded until 2011 by the German Research Foundation (DFG). The network was initiated by GBIF Germany (Global Biodiversity Information Facility). It offers a worldwide unique concept. DNA bank databases of all partners are linked and are accessible via a central web portal, providing DNA samples of complementary collections (microorganisms, protists, plants, algae, fungi and animals). The DNA Bank Network was one of the founders of the Global Genome Biodiversity Network (GGBN) and is fully merged with GGBN today. GGBN agreed on using the data model proposed by the DNA Bank Network. The Botanic Garden and Botanical Museum Berlin-Dahlem (BGBM) hosts the technical secretariat of GGBN and its virtual infrastructure. The main focus of the DNA Bank Network is to enhance taxonomic, systematic, genetic, conservation and evolutionary studies by providing: • high quality, long-term storage of DNA material on which molecular studies have been performed, so that results can be verified, extended, and complemented, • complete on-line documentation of each sample, including the provenance of the original material, the place of voucher deposit, information about DNA quality and extraction methodology, digital images of vouchers and links to published molecular data if available.