Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 28 result(s)
The tree of life links all biodiversity through a shared evolutionary history. This project will produce the first online, comprehensive first-draft tree of all 1.8 million named species, accessible to both the public and scientific communities. Assembly of the tree will incorporate previously-published results, with strong collaborations between computational and empirical biologists to develop, test and improve methods of data synthesis. This initial tree of life will not be static; instead, we will develop tools for scientists to update and revise the tree as new data come in. Early release of the tree and tools will motivate data sharing and facilitate ongoing synthesis of knowledge.
Country
NODE (The National Omics Data Encyclopedia) provides an integrated, compatible, comparable, and scalable multi-omics resource platform that supports flexible data management and effective data release. NODE uses a hierarchical data architecture to support storage of muti-omics data including sequencing data, MS based proteomics data, MS or NMR based metabolomics data, and fluorescence imaging data. Launched in early 2017, NODE has collected and published over 900 terabytes of omics data for researchers from China and all over the world in last three years, 22% of which contains multiple omics data. NODE provides functions around the whole life cycle of omics data, from data archive, data requests/responses to data sharing, data analysis, data review and publish.
Country
bonndata is the institutional, FAIR-aligned and curated, cross-disciplinary research data repository for the publication of research data for all researchers at the University of Bonn. The repository is fully embedded into the University IT and Data Center and curated by the Research Data Service Center (https://www.forschungsdaten.uni-bonn.de/en). The software that bonndata is based on is the open source software Dataverse (https://dataverse.org)
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
Country
Morph·D·Base has been developed to serve scientific research and education. It provides a platform for storing the detailed documentation of all material, methods, procedures, and concepts applied, together with the specific parameters, values, techniques, and instruments used during morphological data production. In other words, it's purpose is to provide a publicly available resource for recording and documenting morphological metadata. Moreover, it is also a repository for different types of media files that can be uploaded in order to serve as support and empirical substantiation of the results of morphological investigations. Our long-term perspective with Morph·D·Base is to provide an instrument that will enable a highly formalized and standardized way of generating morphological descriptions using a morphological ontology that will be based on the web ontology language (OWL - http://www.w3.org/TR/owl-features/). This, however, represents a project that is still in development.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
The KNB Data Repository is an international repository intended to facilitate ecological, environmental and earth science research in the broadest senses. For scientists, the KNB Data Repository is an efficient way to share, discover, access and interpret complex ecological, environmental, earth science, and sociological data and the software used to create and manage those data. Due to rich contextual information provided with data in the KNB, scientists are able to integrate and analyze data with less effort. The data originate from a highly-distributed set of field stations, laboratories, research sites, and individual researchers. The KNB supports rich, detailed metadata to promote data discovery as well as automated and manual integration of data into new projects. The KNB supports a rich set of modern repository services, including the ability to assign Digital Object Identifiers (DOIs) so data sets can be confidently referenced in any publication, the ability to track the versions of datasets as they evolve through time, and metadata to establish the provenance relationships between source and derived data.
GigaDB primarily serves as a repository to host data and tools associated with articles published by GigaScience Press; GigaScience and GigaByte (both are online, open-access journals). GigaDB defines a dataset as a group of files (e.g., sequencing data, analyses, imaging files, software programs) that are related to and support a unit-of-work (article or study). GigaDB allows the integration of manuscript publication with supporting data and tools.
<<<!!!<<< This site is no longer maintained and is provided for reference only. Some functionality or links may not work. For all enquiries please contact the Ensembl Helpdesk http://www.ensembl.org/Help/Contact >>>!!!>>> PhytoPath is a new bioinformatics resource that integrates genome-scale data from important plant pathogen species with literature-curated information about the phenotypes of host infection. Using the Ensembl Genomes browser, it provides access to complete genome assembly and gene models of priority crop and model-fungal, oomycete and bacterial phytopathogens. PhytoPath also links genes to disease progression using data from the curated PHI-base resource. PhytoPath portal is a joint project bringing together Ensembl Genomes with PHI-base, a community-curated resource describing the role of genes in pathogenic infection. PhytoPath provides access to genomic and phentoypic data from fungal and oomycete plant pathogens, and has enabled a considerable increase in the coverage of phytopathogen genomes in Ensembl Fungi and Ensembl Protists. PhytoPath also provides enhanced searching of the PHI-base resource as well as the fungi and protists in Ensembl Genomes.
PHI-base is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. PHI-base is therfore an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, PHI-base also includes antifungal compounds and their target genes.
MycoBank is an on-line database aimed as a service to the mycological and scientific society by documenting mycological nomenclatural novelties (new names and combinations) and associated data, for example descriptions and illustrations. The nomenclatural novelties will each be allocated a unique MycoBank number that can be cited in the publication where the nomenclatural novelty is introduced. These numbers will also be used by the nomenclatural database Index Fungorum, with which MycoBank is associated.
Country
The Global Proteome Machine (GPM) is a protein identification database. This data repository allows users to post and compare results. GPM's data is provided by contributors like The Informatics Factory, University of Michigan, and Pacific Northwestern National Laboratories. The GPM searchable databases are: GPMDB, pSYT, SNAP, MRM, PEPTIDE and HOT.
Ag Data Commons provides access to a wide variety of open data relevant to agricultural research. We are a centralized repository for data already on the web, as well as for new data being published for the first time. While compliance with the U.S. Federal public access and open data directives is important, we aim to surpass them. Our goal is to foster innovative data re-use, integration, and visualization to support bigger, better science and policy.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.