Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
Country
SSHADE is an interoperable Solid Spectroscopy database infrastructure (www.sshade.eu) providing spectral and photometric data obtained by various spectroscopic techniques over the whole electromagnetic spectrum from gamma to radio wavelengths, through X, UV, Vis, IR, and mm ranges. The measured samples include ices, minerals, rocks, organic and carbonaceous materials... and also liquids. They are either synthesized in the laboratory, natural terrestrial analogs collected or measured in the field, or extraterrestrial samples collected on Earth or on planetary bodies: (micro-)meteorites, IDPs, lunar soils... SSHADE contains a set of specialized databases from various research groups, mostly from Europe. It is developed under the H2020 European programs* "Europlanet 2020 RI" and now "Europlanet 2024 RI" with the help of OSUG, CNRS/INSU, IPAG, and CNES. It is hosted by the OSUG data center / Université Grenoble Alpes, France. It can also be searched through the Virtual European Solar and Planetary Access (VESPA) virtual observatory.
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
This database gives values of the basic constants and conversion factors of physics and chemistry resulting from the 2002 least-squares adjustment of the fundamental physical constants as published by the CODATA Task Group on Fundamental Constants and recommended for international use by CODATA.
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.
FAIR & long-term storage of research data from computational materials science, or from experimental materials science that is of relevance to simulations. Complementary tools available to explore the full provenance of the calculations and to perform simulations or data analytics in the cloud.
The Deep Carbon Observatory (DCO) is a global community of multi-disciplinary scientists unlocking the inner secrets of Earth through investigations into life, energy, and the fundamentally unique chemistry of carbon. Deep Carbon Observatory Digital Object Registry (“DCO-VIVO”) is a centrally-managed digital object identification, object registration and metadata management service for the DCO. Digital object registration includes DCO-ID generation based on the global Handle System infrastructure and metadata collection using VIVO. Users will be able to deposit their data into the DCO Data Repository and have that data discoverable and accessible by others.