Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 55 result(s)
The Land Processes Distributed Active Archive Center (LP DAAC) is a component of NASAs Earth Observing System (EOS) Data and Information System (EOSDIS). LP DAAC processes, archives, and distributes land data and products derived from the EOS sensors. Located just outside Sioux Falls, South Dakota, the LP DAAC handles data from three EOS instruments aboard two operational satellite platforms: ASTER and MODIS from Terra, and MODIS from Aqua. ASTER data are received, processed, distributed, and archived while MODIS land products are received, distributed, and archived.
!!! We will terminate ASTER Products Distribution Service in March 2016 although we have been providing ASTER Products since November 20, 2000. !!! ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) is the high efficiency optical imager which covers a wide spectral region from the visible to the thermal infra-red by 14 spectral bands. ASTER acquires data which can be used in various fields in earth science. ASTER was launched from Vandenberg Air Force Base in California, USA in 1999 aboard the Terra, which is the first satellite of the EOS Project. The purpose of ASTER project is to make contributions to extend the understanding of local and regional phenomena on the Earth surface and its atmosphere. The followings are ASTER related information, which includes ASTER instrument, ASTER Ground Data System, ASTER Science Activities, ASTER Data Distribution and so on. ASTER Search provides services to search and order ASTER data products on the website.
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
RAVE (RAdial Velocity Experiment) is a multi-fiber spectroscopic astronomical survey of stars in the Milky Way using the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE collaboration consists of researchers from over 20 institutions around the world and is coordinated by the Leibniz-Institut für Astrophysik Potsdam. As a southern hemisphere survey covering 20,000 square degrees of the sky, RAVE's primary aim is to derive the radial velocity of stars from the observed spectra. Additional information is also derived such as effective temperature, surface gravity, metallicity, photometric parallax and elemental abundance data for the stars. The survey represents a giant leap forward in our understanding of our own Milky Way galaxy; with RAVE's vast stellar kinematic database the structure, formation and evolution of our Galaxy can be studied.
Galaxies, made up of billions of stars like our Sun, are the beacons that light up the structure of even the most distant regions in space. Not all galaxies are alike, however. They come in very different shapes and have very different properties; they may be large or small, old or young, red or blue, regular or confused, luminous or faint, dusty or gas-poor, rotating or static, round or disky, and they live either in splendid isolation or in clusters. In other words, the universe contains a very colourful and diverse zoo of galaxies. For almost a century, astronomers have been discussing how galaxies should be classified and how they relate to each other in an attempt to attack the big question of how galaxies form. Galaxy Zoo (Lintott et al. 2008, 2011) pioneered a novel method for performing large-scale visual classifications of survey datasets. This webpage allows anyone to download the resulting GZ classifications of galaxies in the project.
Country
SSHADE is an interoperable Solid Spectroscopy database infrastructure (www.sshade.eu) providing spectral and photometric data obtained by various spectroscopic techniques over the whole electromagnetic spectrum from gamma to radio wavelengths, through X, UV, Vis, IR, and mm ranges. The measured samples include ices, minerals, rocks, organic and carbonaceous materials... and also liquids. They are either synthesized in the laboratory, natural terrestrial analogs collected or measured in the field, or extraterrestrial samples collected on Earth or on planetary bodies: (micro-)meteorites, IDPs, lunar soils... SSHADE contains a set of specialized databases from various research groups, mostly from Europe. It is developed under the H2020 European programs* "Europlanet 2020 RI" and now "Europlanet 2024 RI" with the help of OSUG, CNRS/INSU, IPAG, and CNES. It is hosted by the OSUG data center / Université Grenoble Alpes, France. It can also be searched through the Virtual European Solar and Planetary Access (VESPA) virtual observatory.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The Vienna Atomic Line Database (VALD) is a collection of atomic and molecular transition parameters of astronomical interest. VALD offers tools for selecting subsets of lines for typical astrophysical applications: line identification, preparing for spectroscopic observations, chemical composition and radial velocity measurements, model atmosphere calculations etc.
Country
The Canadian Astronomy Data Centre (CADC) was established in 1986 by the National Research Council of Canada (NRC), through a grant provided by the Canadian Space Agency (CSA). Over the past 30 years the CADC has evolved from an archiving centre---hosting data from Hubble Space Telescope, Canada-France-Hawaii Telescope, the Gemini observatories, and the James Clerk Maxwell Telescope---into a Science Platform for data-intensive astronomy. The CADC, in partnership with Shared Services Canada, Compute Canada, CANARIE and the university community (funded through the Canadian Foundation for Innovation), offers cloud computing, user-managed storage, group management, and data publication services, in addition to its ongoing mission to provide permanent storage for major data collections. Located at NRC Herzberg Astronomy and Astrophysics Research Centre in Victoria, BC, the CADC staff consists of professional astronomers, software developers, and operations staff who work with the community to develop and deliver leading-edge services to advance Canadian research. The CADC plays a leading role in international efforts to improve the scientific/technical landscape that supports data intensive science. This includes leadership roles in the International Virtual Observatory Alliance and participation in organizations like the Research Data Alliance, CODATA, and the World Data Systems. CADC also contributes significantly to future Canadian projects like the Square Kilometre Array and TMT. In 2019, the Canadian Astronomy Data Centre (CADC) delivered over 2 Petabytes of data (over 200 million individual files) to thousands of astronomers in Canada and in over 80 other countries. The cloud processing system completed over 6 million jobs (over 1100 core years) in 2019.
The US Virtual Astronomical Observatory (VAO) is the VO effort based in the US, and it is one of many VO projects currently underway worldwide. The primary emphasis of the VAO is to provide new scientific research capabilities to the astronomy community. Thus an essential component of the VAO activity is obtaining input from US astronomers about the research tools that are most urgently needed in their work, and this information will guide the development efforts of the VAO. >>>!!!<<< Funding discontinued in 2014 and all software, documentation, and other digital assets developed under the VAO are stored in the VAO Project Repository https://sites.google.com/site/usvirtualobservatory/ . Code is archived on Github https://github.com/TomMcGlynn/usvirtualobservatory . >>>!!!<<<
Country
The Data Center for Aurora in NIPR is responsible for data archiving and dissemination of all-sky camera observations, visual observations, other optical observations (such as TV and photometric observations), auroral image and particle observations from satellites, geomagnetic observations, and observations of upper atmosphere phenomena associated with aurora such as ULF, VLF and CNA activities. This Data Catalogue summarizes the collection of data sets, data books, related publications and facilities available in the WDC for Aurora as of December 2003. The WDC for Aurora changed its name as "Data Center for Aurora in NIPR" in 2008 due to the disappearance of the WDC panel in ICSU.
The European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton) was launched by an Ariane 504 on December 10th 1999. XMM-Newton is ESA's second cornerstone of the Horizon 2000 Science Programme. It carries 3 high throughput X-ray telescopes with an unprecedented effective area, and an optical monitor, the first flown on a X-ray observatory. The large collecting area and ability to make long uninterrupted exposures provide highly sensitive observations.
The ESO/ST-ECF science archive is a joint collaboration of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Space Telescope - European Coordinating Facility (ST-ECF). ESO observational data can be requested after the proprietary period by the astronomical community.
<<<!!!<<< This MultiDark application is now integrated into CosmoSim (https://www.cosmosim.org/ , all data and much more is available there. The old MultiDark server is no longer available. >>>!!!>>> The MultiDark database provides results from cosmological simulations performed within the MultiDark project. This database can be queried by entering SQL statements directly into the Query Form. The access to that form and thus access to the public & private databases is password protected.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The Keck Observatory Archive (KOA)is a collaboration between the NASA Exoplanet Science Institute (NExScI) and the W. M. Keck Observatory (WMKO). This collaboration is founded by the NASA. KOA has been archiving data from the High Resolution Echelle Spectrograph (HIRES) since August 2004 and data acquired with the Near InfraRed echelle SPECtrograph (NIRSPEC) since May 2010. The archived data extend back to 1994 for HIRES and 1999 for NIRSPEC. The W. M. Keck Observatory Archive (KOA) ingests and curates data from the following instruments: DEIMOS, ESI, HIRES, KI, LRIS, MOSFIRE, NIRC2, and NIRSPEC.
The UK Solar System Data Centre (UKSSDC) provides a STFC and NERC jointly funded central archive and data centre facility for Solar System science in the UK. The facilities include the World Data Centre for Solar-Terrestrial Physics, Chilton and the Cluster Ground-Based Data Centre. The UKSSDC supports data archives for the whole UK solar system community encompassing solar, inter-planetary, magnetospheric, ionospheric and geomagnetic science. The UKSSDC is part of RAL Space based at the STFC run Rutherford Appleton Laboratory in Oxfordshire.
Country
The CDPP is the French national data centre for natural plasmas of the solar system. The CDPP assures the long term preservation of data obtained primarily from instruments built using French resources, and renders them readily accessible and exploitable by the international community. The CDPP also provides services to enable on-line data analysis (AMDA), 3D data visualization in context (3DView), and a propagation tool which bridges solar perturbations to in-situ measurements. The CDPP is involved in the development of interoperability, participates in several Virtual Observatory projects, and supports data distribution for scientific missions (Solar Orbiter, JUICE).
Country
An institutional repository at Graz University of Technology to enable storing, sharing and publishing research data, publications and open educational resources. It provides open access services and follows the FAIR principles.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.
WDC for STP, Moscow collects, stores, exchanges with other WDCs, disseminates the publications, sends upon requests data on the following Solar-Terrestrial Physics disciplines: Solar Activity and Interplanetary Medium, Cosmic Rays, Ionospheric Phenomena, Geomagnetic Variations.
The Analytical Geomagnetic Data Center of the Trans-Regional INTERMAGNET Segment is operated by the Geophysical Center of the Russian Academy of Sciences (GC RAS). Geomagnetic data are transmitted from observatories and stations located in Russia and near-abroad countries. The Center also provides access to spaceborne data products. The MAGNUS hardware-software system underlies the operation of the Center. Its particular feature is the automated real-time recognition of artificial (anthropogenic) disturbances in incoming data. Being based on fuzzy logic approach, this quality control service facilitates the preparation of the definitive magnetograms from preliminary records carried out by data experts manually. The MAGNUS system also performs on-the-fly multi-criteria estimation of geomagnetic activity using several indicators and provides online tools for modeling electromagnetic parameters in the near-Earth space. The collected geomagnetic data are stored using relational database management system. The geomagnetic database is intended for storing both 1-minute and 1-second data. The results of anthropogenic and natural disturbance recognition are also stored in the database.
The name Earth Online derives from ESA's Earthnet programme. Earthnet prepares and attracts new ESA Earth Observation missions by setting the international cooperation scheme, preparing the basic infrastructure, building the scientific and application Community and competency in Europe to define and set-up own European Programmes in consultation with member states. Earth Online is the entry point for scientific-technical information on Earth Observation activities by the European Space Agency (ESA). The web portal provides a vast amount of content, grown and collected over more than a decade: Detailed technical information on Earth Observation (EO) missions; Satellites and sensors; EO data products & services; Online resources such as catalogues and library; Applications of satellite data; Access to promotional satellite imagery. After 10 years of operations on distinct sites, the two principal portals of ESA Earth Observation - Earth Online (earth.esa.int) and the Principal Investigator's Portal (eopi.esa.int) have moved to a new platform. ESA's technical and scientific earth observation user communities will from now on be served from a single portal, providing a modern and easy-to-use interface to our services and data.