Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 33 result(s)
The DNA Bank Network was established in spring 2007 and was funded until 2011 by the German Research Foundation (DFG). The network was initiated by GBIF Germany (Global Biodiversity Information Facility). It offers a worldwide unique concept. DNA bank databases of all partners are linked and are accessible via a central web portal, providing DNA samples of complementary collections (microorganisms, protists, plants, algae, fungi and animals). The DNA Bank Network was one of the founders of the Global Genome Biodiversity Network (GGBN) and is fully merged with GGBN today. GGBN agreed on using the data model proposed by the DNA Bank Network. The Botanic Garden and Botanical Museum Berlin-Dahlem (BGBM) hosts the technical secretariat of GGBN and its virtual infrastructure. The main focus of the DNA Bank Network is to enhance taxonomic, systematic, genetic, conservation and evolutionary studies by providing: • high quality, long-term storage of DNA material on which molecular studies have been performed, so that results can be verified, extended, and complemented, • complete on-line documentation of each sample, including the provenance of the original material, the place of voucher deposit, information about DNA quality and extraction methodology, digital images of vouchers and links to published molecular data if available.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.
GenBank® is a comprehensive database that contains publicly available nucleotide sequences for almost 260 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.
The Atlas of Living Australia (ALA) combines and provides scientifically collected data from a wide range of sources such as museums, herbaria, community groups, government departments, individuals and universities. Data records consist of images, literature, molecular DNA data, identification keys, species interaction data, species profile data, nomenclature, source data, conservation indicators, and spatial data.
Country
The objective of this project is to generate the most comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. In our vision, the DNA sequence of chromosome 7 should be made available in a user-friendly manner having every biological and medically relevant feature annotated along its length. We have established this website and database as one step towards this goal. In addition to being a primary data source we foresee this site serving as a "weighing station" for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted to us will be curated and shown in this database.
The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. Databases: Genome Online Database (GOLD), Integrated Microbial Genomes (IGM), MycoCosm, Phytozome
Pandora is an open data platform devoted to the study of the human story. Data may be deposited from various disciplines and research topics that investigate humans from their early beginnings until present in addition to their environmental context (e.g. archeology, anthropology history, ancient DNA, isotopes, zooarchaeology, archaeobotany, and paleoenvironmental and paleoclimatic studies, etc.). Pandora allows autonomous data communities to self-manage their webspace and community membership. Data communities self-curate their data plus other supporting resources. Datasets may be assigned a new DOI and a schema markup is employed to improve data findability. Pandora also allows for links to datasets stored externally and having previously assigned DOIs. Through this, it becomes possible to establish data networks devoted to specific topics that may combine a mix of datasets stored either within Pandora or externally.
This database will provide a central location for scientists to browse uniquely observed proteoforms and to contribute their own datasets. Top-down proteomics is a method of protein identification that uses an ion trapping mass spectrometer to store an isolated protein ion for mass measurement and tandem mass spectrometry analysis.
A database for plant breeders and researchers to combine, visualize, and interrogate the wealth of phenotype and genotype data generated by the Triticeae Coordinated Agricultural Project (TCAP).
The Protein database is a collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB. Protein sequences are the fundamental determinants of biological structure and function.
LOVD portal provides LOVD software and access to a list of worldwide LOVD applications through Locus Specific Database list and List of Public LOVD installations. The LOVD installations that have indicated to be included in the global LOVD listing are included in the overall LOVD querying service, which is based on an API.
The Cancer Cell Line Encyclopedia project is a collaboration between the Broad Institute, and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models, to develop integrated computational analyses that link distinct pharmacologic vulnerabilities to genomic patterns and to translate cell line integrative genomics into cancer patient stratification. The CCLE provides public access to genomic data, analysis and visualization for about 1000 cell lines.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
Country
GSA is a data repository specialized for archiving raw sequence reads. It supports data generated from a variety of sequencing platforms ranging from Sanger sequencing machines to single-cell sequencing machines and provides data storing and sharing services free of charge for worldwide scientific communities. In addition to raw sequencing data, GSA also accommodates secondary analyzed files in acceptable formats (like BAM, VCF). Its user-friendly web interfaces simplify data entry and submitted data are roughly organized as two parts, viz., Metadata and File, where the former can be further assorted into BioProject, BioSample, Experiment and Run, and the latter contains raw sequence reads.
The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. A typical workflow includes the isolation and preparation of material for sequencing, a run of a sequencing machine in which sequencing data are produced and a subsequent bioinformatic analysis pipeline. ENA records this information in a data model that covers input information (sample, experimental setup, machine configuration), output machine data (sequence traces, reads and quality scores) and interpreted information (assembly, mapping, functional annotation). Data arrive at ENA from a variety of sources. These include submissions of raw data, assembled sequences and annotation from small-scale sequencing efforts, data provision from the major European sequencing centres and routine and comprehensive exchange with our partners in the International Nucleotide Sequence Database Collaboration (INSDC). Provision of nucleotide sequence data to ENA or its INSDC partners has become a central and mandatory step in the dissemination of research findings to the scientific community. ENA works with publishers of scientific literature and funding bodies to ensure compliance with these principles and to provide optimal submission systems and data access tools that work seamlessly with the published literature.
ASAP (a systematic annotation package for community analysis of genomes) is a relational database and web interface developed to store, update and distribute genome sequence data and gene expression data collected by or in collaboration with researchers at the University of Wisconsin - Madison. ASAP was designed to facilitate ongoing community annotation of genomes and to grow with genome projects as they move from the preliminary data stage through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, and gene expression data from preliminary experiments.
BBMRI-ERIC is a European research infrastructure for biobanking. We bring together all the main players from the biobanking field – researchers, biobankers, industry, and patients – to boost biomedical research. To that end, we offer quality management services, support with ethical, legal and societal issues, and a number of online tools and software solutions. Ultimately, our goal is to make new treatments possible. The Directory is a tool to share aggregate information about the biobanks that are willing external collaboration. It is based on the MIABIS 2.0 standard, which describes the samples and data in the biobanks at an aggregated level.
The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
Country
BCCM/IHEM is a fungal culture collection specialized in medical and veterinary mycology. About 16.000 strains of yeasts and moulds are available from all over the world: pathogens, allergenic species, strains producing mycotoxins, reference strains, teaching material, etc. It also comprises the Raymond Vanbreuseghem collection and the collection of Janssen Pharmaceutica. The BCCM/IHEM collection makes strains or their genomic DNA publicly available for medical, pharmaceutical and biological research, as well as for method validation, testing or educational purposes. Deposits of strains for public access are free of charge for the depositor. The collection also accept safe and patent deposits, and offers a range of services including trainings in mycology and identifications of strains. Moreover, BCCM/IHEM has expertise in fungal taxonomy, in MALDI-TOF MS identification of moulds and yeasts as well as in genomics (whole genome sequencing of fungal strains, phylogenomics, phylogenetics).
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
This Animal Quantitative Trait Loci (QTL) database (Animal QTLdb) is designed to house all publicly available QTL and trait mapping data (i.e. trait and genome location association data; collectively called "QTL data" on this site) on livestock animal species for easily locating and making comparisons within and between species. New database tools are continuely added to align the QTL and association data to other types of genome information, such as annotated genes, RH / SNP markers, and human genome maps. Besides the QTL data from species listed below, the QTLdb is open to house QTL/association date from other animal species where feasible. Note that the JAS along with other journals, now require that new QTL/association data be entered into a QTL database as part of their publication requirements.