Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
The NCAR is a federally funded research and development center committed to research and education in atmospheric science and related scientific fields. NCAR seeks to support and enhance the scientific community nationally and globally by monitoring and researching the atmosphere and related physical and biological systems. Users can access climate and earth models created to better understand the atmosphere, the Earth and the Sun; as well as data from various NCAR research programs and projects. NCAR is sponsored by the National Science Foundation in addition to various other U.S. agencies.
Country
Earth-Prints is an open archive created and maintained by Istituto Nazionale di Geofisica e Vulcanologia. This digital collection allows users to browse, search and access manuscripts, journal articles, theses, conference materials, books, book-chapters, web products. The goal of our repository is to collect, capture, disseminate and preserve the results of research in the fields of Atmosphere, Cryosphere, Hydrosphere and Solid Earth. Earth-prints is young and growing rapidly.
Country
The Data Center for Aurora in NIPR is responsible for data archiving and dissemination of all-sky camera observations, visual observations, other optical observations (such as TV and photometric observations), auroral image and particle observations from satellites, geomagnetic observations, and observations of upper atmosphere phenomena associated with aurora such as ULF, VLF and CNA activities. This Data Catalogue summarizes the collection of data sets, data books, related publications and facilities available in the WDC for Aurora as of December 2003. The WDC for Aurora changed its name as "Data Center for Aurora in NIPR" in 2008 due to the disappearance of the WDC panel in ICSU.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
The Alvin Frame-Grabber system provides the NDSF community on-line access to Alvin's video imagery co-registered with vehicle navigation and attitude data for shipboard analysis, planning deep submergence research cruises, and synoptic review of data post-cruise. The system is built upon the methodology and technology developed for the JasonII Virtual Control Van and a prototype system that was deployed on 13 Alvin dives in the East Pacific Rise and the Galapagos (AT7-12, AT7-13). The deployed prototype system was extremely valuable in facilitating real-time dive planning, review, and shipboard analysis.
Search and access 201 data sets covering the Atmosphere, Ocean, Land and more. Explore climate indices, reanalyses and satellite data and understand their application to climate model metrics. This is the only data portal that combines data discovery, metadata, figures and world-class expertise on the strengths, limitations and applications of climate data.
The DCS allows you to search a catalogue of metadata (information describing data) to discover and gain access to NERC's data holdings and information products. The metadata are prepared to a common NERC Metadata Standard and are provided to the catalogue by the NERC Data Centres.
<<<!!!<<< This site has been decommissioned. For up-to-date information about Summit Camp and other Arctic Research Operations, please use the Battelle Arctic Gateway. https://battellearcticgateway.org/ >>>!!!>>>
Country
In the framework of the Collaborative Research Centre/Transregio 32 ‘Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation’ (CRC/TR32, www.tr32.de), funded by the German Research Foundation from 2007 to 2018, a RDM system was self-designed and implemented. The so-called CRC/TR32 project database (TR32DB, www.tr32db.de) is operating online since early 2008. The TR32DB handles all data including metadata, which are created by the involved project participants from several institutions (e.g. Universities of Cologne, Bonn, Aachen, and the Research Centre Jülich) and research fields (e.g. soil and plant sciences, hydrology, geography, geophysics, meteorology, remote sensing). The data is resulting from several field measurement campaigns, meteorological monitoring, remote sensing, laboratory studies and modelling approaches. Furthermore, outcomes of the scientists such as publications, conference contributions, PhD reports and corresponding images are collected in the TR32DB.
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
NASA’s Precipitation Measurement Missions – TRMM and GPM – provide advanced information on rain and snow characteristics and detailed three-dimensional knowledge of precipitation structure within the atmosphere, which help scientists study and understand Earth's water cycle, weather and climate.
To understand the global surface energy budget is to understand climate. Because it is impractical to cover the earth with monitoring stations, the answer to global coverage lies in reliable satellite-based estimates. Efforts are underway at NASA and universities to develop algorithms to do this, but such projects are in their infancy. In concert with these ambitious efforts, accurate and precise ground-based measurements in differing climatic regions are essential to refine and verify the satellite-based estimates, as well as to support specialized research. To fill this niche, the Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs.
British Antarctic Survey (BAS) has, for over 60 years, undertaken the majority of Britain's scientific research on and around the Antarctic continent. Atmospheric, biosphere, cryosphere, geosphere, hydrosphere, and Sun-Earth interactions metadata and data are available. Geographic information and collections are highlighted as well. Information and mapping services include a Discovery Metadata System, Data Access System, the Antarctic Digital Database (ADD), Geophysics Data Portal (BAS-GDP), ICEMAR, a fossil database, and the Antarctic Plant Database.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
Country
GEOMAR Helmholtz Centre for Ocean Research Kiel is one of the leading marine science institutions in Europe. GEOMAR investigates the chemical, physical, biological, and geological processes in the oceans, as well as their interactions with the seafloor and the atmosphere. OceanRep is an open access digital collection containing the research output of GEOMAR staff and students. Included are journal articles, conference papers, book chapters, theses and more, - with fulltext, if available. Research data are linked to the publications entries.
Country
>>>>!!!<<< NEPTUNE Canada is now part of Ocean Networks Canada and this website is being phased out. Please visit us on our new website at oceannetworks.ca >>>!!!<<< NEPTUNE Canada, the North-East Pacific Time-series Undersea Networked Experiments, is the world's first regional scale cabled deep ocean observing network. It consists of an 800km network of electro‐optic cable laid on the seabed over the northern Juan de Fuca tectonic plate, off the coast of British Columbia. This tectonic plate serves as an exceptional natural laboratory for ocean observation and experiments. NEPTUNE Canada instruments yield continuous real‐time data and imagery from the ocean surface to beneath the seafloor, and from the coast to the deep sea. They respond to events such as earthquakes, tsunamis, fish migrations, plankton blooms, storms and volcanic eruptions. NEPTUNE Canada offers a unique and exciting approach to ocean science.
Country
Ocean Networks Canada maintains several observatories installed in three different regions in the world's oceans. All three observatories are cabled systems that can provide power and high bandwidth communiction paths to sensors in the ocean. The infrastructure supports near real-time observations from multiple instruments and locations distributed across the Arctic, NEPTUNE and VENUS observatory networks. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible.
Country
PANGAEA - Data Publisher for Earth & Environmental Sciences has an almost 30-year history as an open-access library for archiving, publishing, and disseminating georeferenced data from the Earth, environmental, and biodiversity sciences. Originally evolving from a database for sediment cores, it is operated as a joint facility of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Center for Marine Environmental Sciences (MARUM) at the University of Bremen. PANGAEA holds a mandate from the World Meteorological Organization (WMO) and is accredited as a World Radiation Monitoring Center (WRMC). It was further accredited as a World Data Center by the International Council for Science (ICS) in 2001 and has been certified with the Core Trust Seal since 2019. The successful cooperation between PANGAEA and the publishing industry along with the correspondent technical implementation enables the cross-referencing of scientific publications and datasets archived as supplements to these publications. PANGAEA is the recommended data repository of numerous international scientific journals.
Country
BLLAST is a research programme aimed at exploring the late afternoon transition of the atmospheric boundary layer. The late afternoon period of the diurnal cycle of the boundary layer is poorly understood. This is yet an important transition period that impacts the transport and dillution of water vapour and trace species. The main questions adressed by the project are: - How the turbulence activity fades when heating by the surface decreases? - What is the impact on the transport of chemical species? - How relevant processes can be represented in numerical models? To answer all these questions, a field campaign was carried out during the summer of 2011 (from June 14 to July 8). Many observation systems were then deployed and operated by research teams coming from France and abroad. They were spanning a large spectrum of space and time scales in order to achieve a comprehensive description of the boundary layer processes. The observation strategy consisted in intensifying the operations in the late afternoon with tethered balloons, resarch aircrafts and UAVs.