Filter

Subjects

Content Types

Countries

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
enviPath is a database and prediction system for the microbial biotransformation of organic environmental contaminants. The database provides the possibility to store and view experimentally observed biotransformation pathways. The pathway prediction system provides different relative reasoning models to predict likely biotransformation pathways and products.
MetaCyc is a curated database of experimentally elucidated metabolic pathways from all domains of life. MetaCyc contains pathways involved in both primary and secondary metabolism, as well as associated metabolites, reactions, enzymes, and genes. The goal of MetaCyc is to catalog the universe of metabolism by storing a representative sample of each experimentally elucidated pathway. MetaCyc applications include: Online encyclopedia of metabolism, Prediction of metabolic pathways in sequenced genomes, Support metabolic engineering via enzyme database, Metabolite database aids. metabolomics research.
Country
Plastics are widely used in our economy and each year, at least 350-400 million tons are being produced at a global level. Due to poor recycling and low circular use, tens of millions of tons accumulate annually in marine and terrestrial environments. While it has become obvious that micro and macroplastics contaminate our environments recent research has identified few bacteria and fungi actively degrading plastics by enzymatic reactions. In general these are promiscuous enzymes (hydrolases) acting on low crystaline and mostly low density polymers of PET, ester-based PUR and oligomers of PA. Notably today, no enzymes have been characterized on a biochemical level for polymeric and crystaline PE, ether-based PUR, PS, PVC, PP. While many publications report on plastic degradation often, no convincing biochemical data have been published. Therefore the PAZy database lists exclusively biochemically characterized plastic-active enzymes. Predicted and putative enzymes that were not characterized on a biochemical, functional or structural level are not included in the PAZy database. The entries are manually curated.