Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
The Cellosaurus is a knowledge resource on cell lines. It attempts to describe all cell lines used in biomedical research. Its scope includes: Immortalized cell lines, Naturally immortal cell lines (example: stem cell lines), Finite life cell lines when those are distributed and used widely, Vertebrate cell line with an emphasis on human, mouse and rat cell lines, Invertebrate (insects and ticks) cell lines. Its scope does not include: Primary cell lines (with the exception of the finite life cell lines described above), Plant cell lines. Cellosaurus was initiated to be used as a cell line controlled vocabulary in the context of the neXtProt knowledgebase, but it quickly become apparent that there was a need for a cell line knowledge resource that would serve the needs of individual researchers, cell line distributors and bioinformatic resources. This leads to an increase of the scope and depth of the content of the Cellosaurus. The Cellosaurus is a participant of the Resource Identification Initiative and contributes actively to the work of the International Cell Line Authentication Committee (ICLAC). It is a Global Core Biodata Resource, an ELIXIR Core Data Resource and an IRDiRC Recognized Resource.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
Patients-derived tumor xenograft (PDX) mouse models are an important oncology research platform to study tumor evolution, drug response and personalised medicine approaches. We have expanded to organoids and cell lines and are now called CancerModels.Org
Country
The Swedish Human Protein Atlas project has been set up to allow for a systematic exploration of the human proteome using Antibody-Based Proteomics. This is accomplished by combining high-throughput generation of affinity-purified antibodies with protein profiling in a multitude of tissues and cells assembled in tissue microarrays. Confocal microscopy analysis using human cell lines is performed for more detailed protein localization. The program hosts the Human Protein Atlas portal with expression profiles of human proteins in tissues and cells. The main objective of the resource centre is to produce specific antibodies to human target proteins using a high-throughput production method involving the cloning and protein expression of Protein Epitope Signature Tags (PrESTs). After purification, the antibodies are used to study expression profiles in cells and tissues and for functional analysis of the corresponding proteins in a wide range of platforms.