Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
Content type(s)
Country
A small genotype data repository containing data used in recent papers from the Estonian Biocentre. Most of the data pertains to human population genetics. PDF files of the papers are also freely available.
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
<<<!!!<<< This site is no longer maintained and is provided for reference only. Some functionality or links may not work. For all enquiries please contact the Ensembl Helpdesk http://www.ensembl.org/Help/Contact >>>!!!>>> PhytoPath is a new bioinformatics resource that integrates genome-scale data from important plant pathogen species with literature-curated information about the phenotypes of host infection. Using the Ensembl Genomes browser, it provides access to complete genome assembly and gene models of priority crop and model-fungal, oomycete and bacterial phytopathogens. PhytoPath also links genes to disease progression using data from the curated PHI-base resource. PhytoPath portal is a joint project bringing together Ensembl Genomes with PHI-base, a community-curated resource describing the role of genes in pathogenic infection. PhytoPath provides access to genomic and phentoypic data from fungal and oomycete plant pathogens, and has enabled a considerable increase in the coverage of phytopathogen genomes in Ensembl Fungi and Ensembl Protists. PhytoPath also provides enhanced searching of the PHI-base resource as well as the fungi and protists in Ensembl Genomes.
<<<!!!<<< This repository is no longer available>>>!!!>>>. Although the web pages are no longer available, you will still be able to download the final UniGene builds as static content from the FTP site https://ftp.ncbi.nlm.nih.gov/repository/UniGene/. You will also be able to match UniGene cluster numbers to Gene records by searching Gene with UniGene cluster numbers. For best results, restrict to the “UniGene Cluster Number” field rather than all fields in Gene. For example, a search with Mm.2108[UniGene Cluster Number] finds the mouse transthyretin Gene record (Ttr). You can use the advanced search page https://www.ncbi.nlm.nih.gov/gene/advanced to help construct these searches. Keep in mind that the Gene record contains selected Reference Sequences and GenBank mRNA sequences rather than the larger set of expressed sequences in the UniGene cluster.
The HomoloGene database provides a system for the automated detection of homologs among annotated genes of genomes across multiple species. These homologs are fully documented and organized by homology group. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences.
Content type(s)
Country
Database for identification and cataloguing of group II introns. All bacterial introns listed are full-length and appear to be functional, based on intron RNA and IEP characteristics. The database names the full-length introns, and provides information on their boundaries, host genes, and secondary structures. In addition, the website provides tools for analysis that may be useful to researchers who encounter group II introns in DNA sequences. Intron data can be downloaded in FASTA format.
The Protein database is a collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB. Protein sequences are the fundamental determinants of biological structure and function.
<<<!!!<<< OFFLINE >>>!!!>>> A recent computer security audit has revealed security flaws in the legacy HapMap site that require NCBI to take it down immediately. We regret the inconvenience, but we are required to do this. That said, NCBI was planning to decommission this site in the near future anyway (although not quite so suddenly), as the 1,000 genomes (1KG) project has established itself as a research standard for population genetics and genomics. NCBI has observed a decline in usage of the HapMap dataset and website with its available resources over the past five years and it has come to the end of its useful life. The International HapMap Project is a multi-country effort to identify and catalog genetic similarities and differences in human beings. Using the information in the HapMap, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. The Project is a collaboration among scientists and funding agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United States. All of the information generated by the Project will be released into the public domain. The goal of the International HapMap Project is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. By making this information freely available, the Project will help biomedical researchers find genes involved in disease and responses to therapeutic drugs. In the initial phase of the Project, genetic data are being gathered from four populations with African, Asian, and European ancestry. Ongoing interactions with members of these populations are addressing potential ethical issues and providing valuable experience in conducting research with identified populations. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. The Project officially started with a meeting in October 2002 (https://www.genome.gov/10005336/) and is expected to take about three years.
BioModels is a repository of mathematical models of biological and biomedical systems. It hosts a vast selection of existing literature-based physiologically and pharmaceutically relevant mechanistic models in standard formats. Our mission is to provide the systems modelling community with reproducible, high-quality, freely-accessible models published in the scientific literature.
The Sequence Read Archive stores the raw sequencing data from such sequencing platforms as the Roche 454 GS System, the Illumina Genome Analyzer, the Applied Biosystems SOLiD System, the Helicos Heliscope, and the Complete Genomics. It archives the sequencing data associated with RNA-Seq, ChIP-Seq, Genomic and Transcriptomic assemblies, and 16S ribosomal RNA data.
Country
GSA is a data repository specialized for archiving raw sequence reads. It supports data generated from a variety of sequencing platforms ranging from Sanger sequencing machines to single-cell sequencing machines and provides data storing and sharing services free of charge for worldwide scientific communities. In addition to raw sequencing data, GSA also accommodates secondary analyzed files in acceptable formats (like BAM, VCF). Its user-friendly web interfaces simplify data entry and submitted data are roughly organized as two parts, viz., Metadata and File, where the former can be further assorted into BioProject, BioSample, Experiment and Run, and the latter contains raw sequence reads.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
Country
The Organelle Genome Megasequencing Program (OGMP) provides mitochondrial, chloroplast, and mitochondrial plasmid genome data. OGMP tools allow direct comparison of OGMP and NCBI validated records. Includes GOBASE, a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.