Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
The Cellular Phenotype database stores data derived from high-throughput phenotypic studies and it is being developed as part of the Systems Microscopy Network of Excellence project. The aim of the Cellular Phenotype database is to provide easy access to phenotypic data and facilitate the integration of independent phenotypic studies. Through its interface, users can search for a gene of interest, or a collection of genes, and retrieve the loss-of-function phenotypes observed, in human cells, by suppressing the expression of the selected gene(s), through RNA interference (RNAi), across independent phenotypic studies. Similarly, users can search for a phenotype of interest and retrieve the RNAi reagents that have caused such phenotype and the associated target genes. Information about specific RNAi reagents can also be obtained when searching for a reagent ID.
A database for plant breeders and researchers to combine, visualize, and interrogate the wealth of phenotype and genotype data generated by the Triticeae Coordinated Agricultural Project (TCAP).
MorphoBank is a web application with tools and archives for evolutionary research, specifically systematics (the science of determining the evolutionary relationships among species). Study of the phenotype, which is often visually-based, is central to contemporary systematics and taxonomic research. MorphoBank was developed specifically to provide much needed tools for the expansion and modernization of phylogenetic work on the phenotype
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
Country
The JenAge Ageing Factor Database AgeFactDB is aimed at the collection and integration of ageing phenotype and lifespan data. Ageing factors are genes, chemical compounds or other factors such as dietary restriction, for example. In a first step ageing-related data are primarily taken from existing databases. In addition, new ageing-related information is included both by manual and automatic information extraction from the scientific literature. Based on a homology analysis, AgeFactDB also includes genes that are homologous to known ageing-related genes. These homologs are considered as candidate or putative ageing-related genes.
Country
>>> !!! the repository is offline !!! The current successor is https://www.lovd.nl/USH1C. <<< The database contains all the variants published as pathogenic mutations in the international literature up to November 2007. In addition, unpublished Usher mutations and non-pathogenic variants from the laboratory of Montpellier have been included.
LINCS Data Portal provides access to LINCS data from various sources. The program has six Data and Signature Generation Centers: Drug Toxicity Signature Generation Center, HMS LINCS Center, LINCS Center for Transcriptomics, LINCS Proteomic Characterization Center for Signaling and Epigenetics, MEP LINCS Center, and NeuroLINCS Center.
Country
GnpIS is a multispecies integrative information system dedicated to plant and fungi pests. It bridges genetic and genomic data, allowing researchers access to both genetic information (e.g. genetic maps, quantitative trait loci, association genetics, markers, polymorphisms, germplasms, phenotypes and genotypes) and genomic data (e.g. genomic sequences, physical maps, genome annotation and expression data) for species of agronomical interest. GnpIS is used by both large international projects and plant science departments at the French National Research Institute for Agriculture, Food and Environment. It is regularly improved and released several times per year. GnpIS is accessible through a web portal and allows to browse different types of data either independently through dedicated interfaces or simultaneously using a quick search ('google like search') or advanced search (Biomart, Galaxy, Intermine) tools.
METLIN represents the largest MS/MS collection of data with the database generated at multiple collision energies and in positive and negative ionization modes. The data is generated on multiple instrument types including SCIEX, Agilent, Bruker and Waters QTOF mass spectrometers.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.