Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
Country
The CCC method yields accurate excitation and ionisation cross sections for atomic and ionic targets which are well-modelled by one or two valence electrons above a Hartree-Fock core. Inner core ionisation can be a major contributor to the total ionisation cross section. Such contributions can be estimated using various forms of Born-based approximations.
Atomic and Ionic UV/VUV Linelist . This facility permits selective searches of some atomic data compliled by R. L. Kelly. The data provided are: - vacuum wavelength [in nm], - intensity estimate, - E [in cm-1], j, and configuration for lower and upper levels, - multiplet (where available), - reference numbers of the sources of the data.
This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.
Numerical database of atomic and molecular processes and particle-surface interactions. ALADDIN has formatted data on atomic structure and spectra (energy levels,wave lengths, and transition probabilities); electron and heavy particle collisions with atoms, ions, and molecules (cross sections and/or rate coefficients, including, in most cases, analytic fit to the data); sputtering of surfaces by impact of main plasma constituents and self sputtering; particle reflection from surfaces; thermophysical and thermomechanical properties of beryllium and pyrolytic graphites.
The Atomic Data for Astrophysics server provides links to basic atomic data required for calculation of the ionization state of astrophysical plasmas and for quantitative spectroscopy.
The Yeast Resource Center Public Image Repository is a database of fluorescent microscopy images and their associated metadata/experimental parameters. The images depict the localization, co-localization and FRET (fluorescence energy transfer) of proteins in cells, particularly in the budding yeast Saccharomyces cerevisiae as a model organism. Users may download the entire datasets to improve their research.
This facility permits selective searches of some atomic data files compiled by R. L. Kurucz (Harvard-Smithsonian Center for Astrophysics). The data provided are: - vacuum wavelength (in nm) [above 200 nm calculated using Edlen, Metrologia, Vol. 2, No. 2, 1966]- air wavelength (in nm) above 200 nm- log(gf), - E [in cm-1], j, parity, and configuration for the levels (lower, upper), - information regarding the source of the data. CD-ROM 18 contains the spectrum synthesis programs ATLAS7V, SYNTHE, SPECTRV, ROTATE, BROADEN, PLOTSYN, etc. and sample runs found in directory PROGRAMS; Atomic line data files BELLHEAVY.DAT, BELLLIGHT.DAT, GFIRONLAB.DAT, GULLIVER.DAT, NLTELINES.DAT, GFIRONQ.DAT, obsolete, merged into GFALL, found in directory LINELISTS: Molecular line data files C2AX.ASC, C2BA.ASC, C2DA.ASC, C2EA.ASC, CNAX.ASC, CNBX.ASC, COAX.ASC, COXX.ASC, H2.ASC, HYDRIDES.ASC, SIOAX.ASC, SIOEX.ASC, SIOXX.ASC, found in directory LINELISTS; and my solar flux atlas for test calculations SOLARFLUX.ASC.
This is a compilation of approximately 923,000 allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.5 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition. No attempt has been made to include observed wavelengths. Most of the atomic energy level data have been taken from the Atomic Spectra Database provided by the National Institute of Standards and Technology (NIST).
Country
In order to control access to the experimental data obtained at the ILL in a coherent and secure fashion, the ILL has recently developed a single portal for consulting, downloading and managing your data. Here “data” is understood to mean raw data (i.e. numor files), processed data, and meta-data (e.g. log files or “logs”).
A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z ≤ 100), at energies from 1 keV to 100 GeV.
The Yeast Resource Center provides access to data about mass spectrometry, yeast two-hybrid arrays, deconvolution florescence microscopy, protein structure prediction and computational biology. These services are provided to further the goal of a complete understanding of the chemical interactions required for the maintenance and faithful reproduction of a living cell. The observation that the fundamental biological processes of yeast are conserved among all eukaryotes ensures that this knowledge will shape and advance our understanding of living systems.
Country
The Data Bank operates a computer program service related to nuclear energy applications. The software library collects programs, compiles and verifies them in an appropriate computer environment, ensuring that the computer program package is complete and adequately documented. This collection of material contains more than 2000 documented packages and group cross-section data sets. We distribute these codes on CD-ROM, DVD and via electronic transfer to about 900 nominated NEA Data Bank establishments (see the rules for requesters). Standard software verification procedures are used following an ANSI/ANS standard.
Lab Notes Online presents historic scientific data from the Caltech Archives' collections in digital facsimile. Beginning in the fall of 2008, the first publication in the series is Robert A. Millikan's notebooks for his oil drop experiments to measure the charge of the electron, dating from October 1911 to April 1912. Other laboratory, field, or research notes will be added to the archive over time.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The information accumulated in the SPECTR-W3 ADB contains over 450,000 records and includes factual experimental and theoretical data on ionization potentials, energy levels, wavelengths, radiation transition probabilities, oscillator strengths, and (optionally) the parameters of analytical approximations of electron-collisional cross-sections and rates for atoms and ions. Those data were extracted from publications in physical journals, proceedings of the related conferences, special-purpose publications on atomic data, and provided directly by authors. The information is supplied with references to the original sources and comments, elucidating the details of experimental measurements or calculations, where necessary and available. To date, the SPECTR-W3 ADB is the largest factual database in the world containing the information on spectral properties of multicharged ions.
The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research and applied nuclear technologies. The NNDC is a worldwide resource for nuclear data. The information available to the users of NNDC services is the product of the combined efforts of the NNDC and cooperating data centers and other interested groups, both in the United States and worldwide. The NNDC specializes in the following areas: - Nuclear structure and low-energy nuclear reactions - Nuclear databases and information technology - Nuclear data compilation and evaluation
The Square Kilometre Array (SKA) is a radio telescope with around one million square metres of collecting area, designed to study the Universe with unprecedented speed and sensitivity. The SKA is not a single telescope, but a collection of various types of antennas, called an array, to be spread over long distances. The SKA will be used to answer fundamental questions of science and about the laws of nature, such as: how did the Universe, and the stars and galaxies contained in it, form and evolve? Was Einstein’s theory of relativity correct? What is the nature of ‘dark matter’ and ‘dark energy’? What is the origin of cosmic magnetism? Is there life somewhere else in the Universe?
This database gives values of the basic constants and conversion factors of physics and chemistry resulting from the 2002 least-squares adjustment of the fundamental physical constants as published by the CODATA Task Group on Fundamental Constants and recommended for international use by CODATA.