Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 40 result(s)
The International Satellite Cloud Climatology Project (ISCCP) is a database of intended for researchers to share information about cloud radiative properties. The data sets focus on the effects of clouds on the climate, the radiation budget, and the long-term hydrologic cycle. Within the data sets the data entries are broken down into entries of specific characteristics based on temporal resolution, spatial resolution, or temporal coverage.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
The projects include airborne, ground-based and ocean measurements, social science surveys, satellite data use, modelling studies and value-added product development. Therefore, the BAOBAB data portal enables to access a great amount and a large variety of data: - 250 local observation datasets, that have been collected by operational networks since 1850, long term monitoring research networks and intensive scientific campaigns; - 1350 outputs of a socio-economics questionnaire; - 60 operational satellite products and several research products; - 10 output sets of meteorological and ocean operational models and 15 of research simulations. Data documentation complies with metadata international standards, and data are delivered into standard formats. The data request interface takes full advantage of the database relational structure and enables users to elaborate multicriteria requests (period, area, property…).
The Satellite Application Facility on Climate Monitoring (CM SAF) develops, produces, archives and disseminates satellite-data-based products in support to climate monitoring. The product suite mainly covers parameters related to the energy & water cycle and addresses many of the Essential Climate Variables as defined by GCOS (GCOS 138). The CM SAF produces both Enviromental Data Records and Climate Data Records.
<<<!!!<<< The demand for high-value environmental data and information has dramatically increased in recent years. To improve our ability to meet that demand, NOAA’s former three data centers—the National Climatic Data Center, the National Geophysical Data Center, and the National Oceanographic Data Center, which includes the National Coastal Data Development Center—have merged into the National Centers for Environmental Information (NCEI). >>>!!!>>> The National Oceanographic Data Center includes the National Coastal Data Development Center (NCDDC) and the NOAA Central Library, which are integrated to provide access to the world's most comprehensive sources of marine environmental data and information. NODC maintains and updates a national ocean archive with environmental data acquired from domestic and foreign activities and produces products and research from these data which help monitor global environmental changes. These data include physical, biological and chemical measurements derived from in situ oceanographic observations, satellite remote sensing of the oceans, and ocean model simulations.
Search and access 201 data sets covering the Atmosphere, Ocean, Land and more. Explore climate indices, reanalyses and satellite data and understand their application to climate model metrics. This is the only data portal that combines data discovery, metadata, figures and world-class expertise on the strengths, limitations and applications of climate data.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
EOL’s platforms and instruments collect large and often unique data sets that must be validated, archived and made available to the research community. The goal of EOL data services is to advance science through delivering high-quality project data and metadata in ways that are as transparent, secure, and easily accessible as possible - today and into the future. By adhering to accepted standards in data formats and data services, EOL provides infrastructure to facilitate discovery and direct access to data and software from state-of-the-art commercial and locally-developed applications. EOL’s data services are committed to the highest standard of data stewardship from collection to validation to archival.
The EPN (or EUREF Permanent Network) is a voluntary organization of several European agencies and universities that pool resources and permanent GNSS station data to generate precise GNSS products. The EPN has been created under the umbrella of the International Association Geodesy and more precisely by its sub-commission EUREF. The European Terrestrial Reference System 89 (ETRS89) is used as the standard precise GPS coordinate system throughout Europe. Supported by EuroGeographics and endorsed by the EU, this reference system forms the backbone for all geographic and geodynamic projects on the European territory both on a national as on an international level.
The NOAA/ESRL Physical Sciences Division (PSD) conducts weather and climate research to observe and understand Earth's physical environment, and to improve weather and climate predictions on global-to-local scales. PSD archives a wide range of data ranging from gridded climate datasets extending hundreds of years to real-time wind profiler data at a single location. The data or products derived from this data, organized by type, are available to scientists and the general public .
<<<!!!<<< The repository is no longer available. >>>!!!>>> The website is archived: https://web.archive.org/web/20161118010932/http:/ourocean.jpl.nasa.gov/ You can follow links to navigate further into archived content from that site.
SeaBASS, the publicly shared archive of in situ oceanographic and atmospheric data maintained by the NASA Ocean Biology Processing Group (OBPG). High quality in situ measurements are prerequisite for satellite data product validation, algorithm development, and many climate-related inquiries. As such, the NASA Ocean Biology Processing Group (OBPG) maintains a local repository of in situ oceanographic and atmospheric data to support their regular scientific analyses. The SeaWiFS Project originally developed this system, SeaBASS, to catalog radiometric and phytoplankton pigment data used their calibration and validation activities. To facilitate the assembly of a global data set, SeaBASS was expanded with oceanographic and atmospheric data collected by participants in the SIMBIOS Program, under NASA Research Announcements NRA-96 and NRA-99, which has aided considerably in minimizing spatial bias and maximizing data acquisition rates. Archived data include measurements of apparent and inherent optical properties, phytoplankton pigment concentrations, and other related oceanographic and atmospheric data, such as water temperature, salinity, stimulated fluorescence, and aerosol optical thickness. Data are collected using a number of different instrument packages, such as profilers, buoys, and hand-held instruments, and manufacturers on a variety of platforms, including ships and moorings.
OceanSITES is a worldwide system of long-term, deepwater reference stations measuring dozens of variables and monitoring the full depth of the ocean from air-sea interactions down to 5,000 meters. Since 1999, the international OceanSITES science team has shared both data and costs in order to capitalize on the enormous potential of these moorings. The growing network now consists of about 30 surface and 30 subsurface arrays. Satellite telemetry enables near real-time access to OceanSITES data by scientists and the public. OceanSITES moorings are an integral part of the Global Ocean Observing System. They complement satellite imagery and ARGO float data by adding the dimensions of time and depth.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
The Precipitation Processing System (PPS) evolved from the Tropical Rainfall Measuring Mission (TRMM) Science Data and Information System (TSDIS). The purpose of the PPS is to process, analyze and archive data from the Global Precipitation Measurement (GPM) mission, partner satellites and the TRMM mission. The PPS also supports TRMM by providing validation products from TRMM ground radar sites. All GPM, TRMM and Partner public data products are available to the science community and the general public from the TRMM/GPM FTP Data Archive. Please note that you need to register to be able to access this data. Registered users can also search for GPM, partner and TRMM data, order custom subsets and set up subscriptions using our PPS Data Products Ordering Interface (STORM)
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
The South African Weather Service (SAWS) is a Section 3(a) public entity under the Ministry of Environmental Affairs and is governed by a Board. It is an authoritative voice for weather and climate forecasting in South Africa and as a member of the World Meteorological Organization (WMO) it complies with international meteorological standards. The South African Weather Service has a variety of weather products and services which can be customized.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
Country
As the third center for oceanography of the World Data Center following WDC-A of the United States and WDC-B of Russia, WDC-D for oceanography boasts long-term and stable sources of domestic marine basic data. The State Oceanic Administration now has long-term observations obtained from the fixed coastal ocean stations, offshore and oceanic research vessels, moored and drifting buoys. More and more marine data have been available from the Chinese-foreign marine cooperative surveys, analysis and measurement of laboratory samples, reception by the satellite ground station, aerial telemeter and remote sensing, the GOOS program and global ships of opportunity reports, etc; More marine data are being and will be obtained from the ongoing “863” program, one of the state key projects during the Ninth Five-year plan and the seasat No 1 which is scheduled to be launched next year. Through many years’ effort, the WDC-D for oceanography has established formal relationship of marine data exchange with over 130 marine institutions in more than 60 countries in the world and is maintaining a close relationship of data exchange with over 30 major national oceanographic data centers. The established China Oceanic Information Network has joined the international marine data exchange system via Internet. Through these channels, a large amount data have been acquired of through international exchange, which, plus the marine data collected at home for many years, has brought the WDC-D for Oceanography over 100 years’ global marine data with a total data amounting to more than 10 billion bytes. In the meantime, a vast amount of work has been done in the standardized and normalized processing and management of the data, and a series of national and professional standards have been formulated and implemented successively. Moreover, appropriate standards and norms are being formulated as required.
ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
The World Ocean Database (WOD) is a collection of scientifically quality-controlled ocean profile and plankton data that includes measurements of temperature, salinity, oxygen, phosphate, nitrate, silicate, chlorophyll, alkalinity, pH, pCO2, TCO2, Tritium, Δ13Carbon, Δ14Carbon, Δ18Oxygen, Freon, Helium, Δ3Helium, Neon, and plankton. WOD contains all data of "World Data Service Oceanography" (WDS-Oceanography).