Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
The Global Precipitation Measurement (GPM) mission is an international network of satellites that provide the next-generation global observations of rain and snow. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), the GPM concept centers on the deployment of a “Core” satellite carrying an advanced radar / radiometer system to measure precipitation from space and serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.
ERDDAP is a data server that gives you a simple, consistent way to download subsets of gridded and tabular scientific datasets in common file formats and make graphs and maps. This particular ERDDAP installation has oceanographic data (for example, data from satellites and buoys).
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
NOAA's National Centers for Environmental Information (NCEI) are responsible for hosting and providing public access to one of the most significant archives for environmental data on Earth with over 20 petabytes of comprehensive atmospheric, coastal, oceanic, and geophysical data. NCEI headquarters are located in Asheville, North Carolina. Most employees work in the four main locations, but apart from those locations, NCEI has employees strategically located throughout the United States. The main locations are Cooperative Institute for Climate and Satellites–North Carolina (CICS-NC) at Asheville, North Carolina, Cooperative Institute for Research in Environmental Sciences (CIRES) at Boulder Colorado, Cooperative Institute for Climate and Satellites–Maryland (CICS-MD) at Silver Spring Maryland and Stennis Space Center, Mississippi.
The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected, modified and hosted a large amount of earth observation data for the majority of the UK, including imagery from ERS satellites, ENVISAT and ALOS, high-resolution Digital Elevation Models (DEMs) and Digital Terrain Models (DTMs) and aerial photography dating back to 1930. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. Aside from the thermal imagery data which stands alone, the data reside in four collections: optical, elevation, radar and feature.
NWS/NCEP/Climate Prediction Center delivers climate prediction, monitoring, and diagnostic products for timescales from weeks to years to the Nation and the global community for the protection of life and property and the enhancement of the economy. The goal of the CPC website is to provide easy and comprehensive access to data and products that serve our mission. We serve a broad audience ranging from government to non-government entities like academia, NGO’s, and the public and private sectors. Specific sectors include agriculture, energy, health, transportation, emergency managers, etc.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
Country
The Norwegian Meteorological Institute supplies climate observations and weather data and forecasts for the country and surrounding waters (including the Arctic). In addition commercial services are provided to fit customers requirements. Data are served through a number of subsystems (information provided in repository link) and cover data from internal services of the institute, from external services operated by the institute and research projects where the institute participates. Further information is provided in the landing page which also contains entry points some of the data portals operated.
Country
The Institute of Ocean Sciences (IOS)/Ocean Sciences Division (OSD) data archive contains the holdings of oceanographic data generated by the IOS and other agencies and laboratories, including the Institute of Oceanography at the University of British Columbia and the Pacific Biological Station. The contents include data from B.C. coastal waters and inlets, B.C. continental shelf waters, open ocean North Pacific waters, Beaufort Sea and the Arctic Archipelago.
Country
The Ocean Date and Information System provides information on physical, chemical, biological and geological parameters of ocean and coasts on spatial and temporal domains that is vital for both research and operational oceanography. In-situ and remote sensing data are included. The Ocean Information Bank is supported by the data received from Ocean Observing Systems in the Indian Ocean (both the in-situ platforms and satellites) as well as by a chain of Marine Data Centres. Ocean and coastal measurements are available. Data products are accessible through various portals on the site and are largely available by data type (in situ or remote sensing) and then by parameter.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
Country
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first bistatic SAR mission in space. TanDEM-X and its twin satellite TerraSAR-X are flying in a closely controlled formation with typical distances between 250 and 500 meters. Primary mission objective is the generation of a consistent global digital elevation model with few meter level height accuracy. Beyond that, GFZ equipped TanDEM-X with a geodetic grade GPS receiver for precise baseline determination and for radio occultation measurements. TanDEM-X was launched on June 21, 2010 for a 5 year mission lifetime. The GPS radio occultation data of the German TanDEM-X satellite are analysed and globally distributed vertical atmospheric profiles (bending angles, refractivity, temperature, water vapor) are derived and provided for the international user community.
The name Earth Online derives from ESA's Earthnet programme. Earthnet prepares and attracts new ESA Earth Observation missions by setting the international cooperation scheme, preparing the basic infrastructure, building the scientific and application Community and competency in Europe to define and set-up own European Programmes in consultation with member states. Earth Online is the entry point for scientific-technical information on Earth Observation activities by the European Space Agency (ESA). The web portal provides a vast amount of content, grown and collected over more than a decade: Detailed technical information on Earth Observation (EO) missions; Satellites and sensors; EO data products & services; Online resources such as catalogues and library; Applications of satellite data; Access to promotional satellite imagery. After 10 years of operations on distinct sites, the two principal portals of ESA Earth Observation - Earth Online (earth.esa.int) and the Principal Investigator's Portal (eopi.esa.int) have moved to a new platform. ESA's technical and scientific earth observation user communities will from now on be served from a single portal, providing a modern and easy-to-use interface to our services and data.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.