Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 29 result(s)
To understand the global surface energy budget is to understand climate. Because it is impractical to cover the earth with monitoring stations, the answer to global coverage lies in reliable satellite-based estimates. Efforts are underway at NASA and universities to develop algorithms to do this, but such projects are in their infancy. In concert with these ambitious efforts, accurate and precise ground-based measurements in differing climatic regions are essential to refine and verify the satellite-based estimates, as well as to support specialized research. To fill this niche, the Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs.
A planetary-scale platform for Earth science data & analysis. Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers, and developers use Earth Engine to detect changes, map trends, and quantify differences on the Earth's surface.
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
In its 10-year tenure, NCED has made major contributions to the growth of Earth-Surface Dynamics (ESD) through direct research in three Integrated Programs (IP) of Streams, Watersheds and Deltas. These contributions include: Establishment of experimental geomorphology and stratigraphy as a major source of insight in ESD, Integration of quantitative methods from engineering, physics, and applied math into ESD, Advances in the coupling of life, especially vegetation, and landscape dynamics, Integration of a variety of novel methods from stochastic hydrology, including nonlocal transport and multifractal spatial signatures, into ESD, Advances in providing the scientific basis for restoring streams, and Integration of subsurface structure and stratigraphic records into understanding present-day delta dynamics. All data created or compiled by NCED-funded scientists is archived here.
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
The Global Hydrology Resource Center (GHRC) provides both historical and current Earth science data, information, and products from satellite, airborne, and surface-based instruments. GHRC acquires basic data streams and produces derived products from many instruments spread across a variety of instrument platforms.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
The ASTER Project consists of two parts, each having a Japanese and a U.S. component. Mission operations are split between Japan Space Systems (J-spacesystems) and the Jet Propulsion Laboratory (JPL) in the U.S. J-spacesystems oversees monitoring instrument performance and health, developing the daily schedule command sequence, processing Level 0 data to Level 1, and providing higher level data processing, archiving, and distribution. The JPL ASTER project provides scheduling support for U.S. investigators, calibration and validation of the instrument and data products, coordinating the U.S. Science Team, and maintaining the science algorithms. The joint Japan/U.S. ASTER Science Team has about 40 scientists and researchers. Data access via NASA Reverb, ASTER Japan site, earth explorer, GloVis,GDEx and LP DAAC. See here https://asterweb.jpl.nasa.gov/data.asp. In Addition data are availabe through the newly implemented ASTER Volcano archive (AVA) https://ava.jpl.nasa.gov/ .
Country
PANGAEA - Data Publisher for Earth & Environmental Sciences has an almost 30-year history as an open-access library for archiving, publishing, and disseminating georeferenced data from the Earth, environmental, and biodiversity sciences. Originally evolving from a database for sediment cores, it is operated as a joint facility of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Center for Marine Environmental Sciences (MARUM) at the University of Bremen. PANGAEA holds a mandate from the World Meteorological Organization (WMO) and is accredited as a World Radiation Monitoring Center (WRMC). It was further accredited as a World Data Center by the International Council for Science (ICS) in 2001 and has been certified with the Core Trust Seal since 2019. The successful cooperation between PANGAEA and the publishing industry along with the correspondent technical implementation enables the cross-referencing of scientific publications and datasets archived as supplements to these publications. PANGAEA is the recommended data repository of numerous international scientific journals.
!!! We will terminate ASTER Products Distribution Service in March 2016 although we have been providing ASTER Products since November 20, 2000. !!! ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) is the high efficiency optical imager which covers a wide spectral region from the visible to the thermal infra-red by 14 spectral bands. ASTER acquires data which can be used in various fields in earth science. ASTER was launched from Vandenberg Air Force Base in California, USA in 1999 aboard the Terra, which is the first satellite of the EOS Project. The purpose of ASTER project is to make contributions to extend the understanding of local and regional phenomena on the Earth surface and its atmosphere. The followings are ASTER related information, which includes ASTER instrument, ASTER Ground Data System, ASTER Science Activities, ASTER Data Distribution and so on. ASTER Search provides services to search and order ASTER data products on the website.
The Ocean Biology Processing Group (OBPG) serves as the Distributed Active Archive Center (DAAC) for all Ocean Biology (OB) data produced or collected under NASA’s Earth Observing System Data and Information System (EOSDIS). This website thus serves as the primary data access portal to the NASA OB.DAAC. The links below provide a variety of methods to access the holdings of the OB.DAAC, including visual browsers that enable point-and-click access by data levels and direct access for bulk download. In agreement with partner organizations, some data access requires user registration to enable better tracking of usage metrics.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
The NASA/GEWEX SRB project is a major component of the GEWEX radiation research. The objective of the NASA/GEWEX SRB project is to determine surface, top-of-atmosphere (TOA), and atmospheric shortwave (SW) and longwave (LW) radiative fluxes with the precision needed to predict transient climate variations and decadal-to-centennial climate trends.
Country
AVISO stands for "Archiving, Validation and Interpretation of Satellite Oceanographic data". Here, you will find data, articles, news and tools to help you discover or improve your skills in the altimetry domain through four key themes: ocean, coast, hydrology and ice. Altimetry is a technique for measuring height. Satellite altimetry measures the time taken by a radar pulse to travel from the satellite antenna to the surface and back to the satellite receiver. Combined with precise satellite location data, altimetry measurements yield sea-surface heights.
Search and access 201 data sets covering the Atmosphere, Ocean, Land and more. Explore climate indices, reanalyses and satellite data and understand their application to climate model metrics. This is the only data portal that combines data discovery, metadata, figures and world-class expertise on the strengths, limitations and applications of climate data.
Country
EarthByte is an internationally leading eGeoscience collaboration between several Australian Universities, international centres of excellence and industry partners. One of the fundamental aims of the EarthByte Group is geodata synthesis through space and time, assimilating the wealth of disparate geological and geophysical data into a four-dimensional Earth model including tectonics, geodynamics and surface processes. The EarthByte Group is pursuing open innovation via collaborative software development, high performance and distributed computing, “big data” analysis and by making open access digital data collections available to the community.
The Magnetics Information Consortium (MagIC) improves research capacity in the Earth and Ocean sciences by maintaining an open community digital data archive for rock magnetic, geomagnetic, archeomagnetic (archaeomagnetic) and paleomagnetic (palaeomagnetic) data. Different parts of the website allow users access to archive, search, visualize, and download these data. MagIC supports the international rock magnetism, geomagnetism, archeomagnetism (archaeomagnetism), and paleomagnetism (palaeomagnetism) research and endeavors to bring data out of private archives, making them accessible to all and (re-)useable for new, creative, collaborative scientific and educational activities. The data in MagIC is used for many types of studies including tectonic plate reconstructions, geomagnetic field models, paleomagnetic field reversal studies, magnetohydrodynamical studies of the Earth's core, magnetostratigraphy, and archeology. MagIC is a domain-specific data repository and directed by PIs who are both producers and consumers of rock, geo, and paleomagnetic data. Funded by NSF since 2003, MagIC forms a major part of https://earthref.org which integrates four independent cyber-initiatives rooted in various parts of the Earth, Ocean and Life sciences and education.
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is an element of the Earth Observing System Data and Information System (EOSDIS). The EOSDIS provides science data to a wide community of users for NASA's Science Mission Directorate. Since the launch of NASA's first ocean-observing satellite, Seasat, in 1978, PO.DAAC has become the premier data center for measurements focused on ocean surface topography (OST), sea surface temperature (SST), ocean winds, sea surface salinity (SSS), gravity, ocean circulation and sea ice.In addition to providing access to its data holdings, PO.DAAC acts as a gateway to data stored at other ocean and climate archives. This and other tools and services enable PO.DAAC to support a wide user community working in areas such as ocean and climate research, applied science and industry, natural resource management, policy making, and general public consumption.
Country
SSHADE is an interoperable Solid Spectroscopy database infrastructure (www.sshade.eu) providing spectral and photometric data obtained by various spectroscopic techniques over the whole electromagnetic spectrum from gamma to radio wavelengths, through X, UV, Vis, IR, and mm ranges. The measured samples include ices, minerals, rocks, organic and carbonaceous materials... and also liquids. They are either synthesized in the laboratory, natural terrestrial analogs collected or measured in the field, or extraterrestrial samples collected on Earth or on planetary bodies: (micro-)meteorites, IDPs, lunar soils... SSHADE contains a set of specialized databases from various research groups, mostly from Europe. It is developed under the H2020 European programs* "Europlanet 2020 RI" and now "Europlanet 2024 RI" with the help of OSUG, CNRS/INSU, IPAG, and CNES. It is hosted by the OSUG data center / Université Grenoble Alpes, France. It can also be searched through the Virtual European Solar and Planetary Access (VESPA) virtual observatory.
The Natural Environment Research Council's Data Repository for Atmospheric Science and Earth Observation. The Centre for Environmental Data Analysis (CEDA) serves the environmental science community through three data centres, data analysis environments, and participation in a host of relevant research projects. We aim to support environmental science, further environmental data archival practices, and develop and deploy new technologies to enhance access to data. Additionally we provide services to aid large scale data analysis.
Country
NSSDC is the nation-level space science data center which recognized by the Ministry of Science and Technology of China. As a repository for space science data, NSSDC assumes the responsibility of the long-term stewardship and offering a reliable service of space science data in China. It also has been the Chinese center for space science of the World Data Center (WDC) since 1988. In 2013, NSSDC became a regular member of World Data System. Data resources are concentrated in the following fields of space physics and space environment, space astronomy, lunar and planetary science, space application and engineering. In space physics, the NSSDC maintains space-based observation data and ground-based observation data of the middle and upper atmosphere, ionosphere and earth surface, from Geo-space Double Star Exploration Program and Meridian Project. In space astronomy, NSSDC archived pointed observation data of Hard X-ray Modulation Telescope. In lunar and planetary science, space application and engineering, NSSDC also collects detection data of Chang’E from Lunar Exploration Program and science products of BeiDou satellites.
<<<!!!<<< The demand for high-value environmental data and information has dramatically increased in recent years. To improve our ability to meet that demand, NOAA’s former three data centers—the National Climatic Data Center, the National Geophysical Data Center, and the National Oceanographic Data Center, which includes the National Coastal Data Development Center—have merged into the National Centers for Environmental Information (NCEI). >>>!!!>>> NCEI is responsible for hosting and providing access to one of the most significant archives on Earth, with comprehensive oceanic, atmospheric, and geophysical data. From the depths of the ocean to the surface of the sun and from million-year-old sediment records to near real-time satellite images, NCEI is the Nation's leading authority for environmental information. The National Centers for Environmental Information (NCEI), which hosts the World Data Service for Oceanography is a national environmental data center operated by the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce. NCEI are responsible for hosting and providing access to one of the most significant archives on earth, with comprehensive oceanic, atmospheric, and geophysical data. The primary mission of the World Data Service for Oceanography is to ensure that global oceanographic datasets collected at great cost are maintained in a permanent archive that is easily and openly accessible to the world science community and to other users.