Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
<<<!!!<<< This repository is no longer available. >>>!!!>>> NetPath is currently one of the largest open-source repository of human signaling pathways that is all set to become a community standard to meet the challenges in functional genomics and systems biology. Signaling networks are the key to deciphering many of the complex networks that govern the machinery inside the cell. Several signaling molecules play an important role in disease processes that are a direct result of their altered functioning and are now recognized as potential therapeutic targets. Understanding how to restore the proper functioning of these pathways that have become deregulated in disease, is needed for accelerating biomedical research. This resource is aimed at demystifying the biological pathways and highlights the key relationships and connections between them. Apart from this, pathways provide a way of reducing the dimensionality of high throughput data, by grouping thousands of genes, proteins and metabolites at functional level into just several hundreds of pathways for an experiment. Identifying the active pathways that differ between two conditions can have more explanatory power than just a simple list of differentially expressed genes and proteins.
WikiPathways was established to facilitate the contribution and maintenance of pathway information by the biology community. WikiPathways is an open, collaborative platform dedicated to the curation of biological pathways. WikiPathways thus presents a new model for pathway databases that enhances and complements ongoing efforts, such as KEGG, Reactome and Pathway Commons. Building on the same MediaWiki software that powers Wikipedia, we added a custom graphical pathway editing tool and integrated databases covering major gene, protein, and small-molecule systems. The familiar web-based format of WikiPathways greatly reduces the barrier to participate in pathway curation. More importantly, the open, public approach of WikiPathways allows for broader participation by the entire community, ranging from students to senior experts in each field. This approach also shifts the bulk of peer review, editorial curation, and maintenance to the community.
The mission of the GO Consortium is to develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life. The Gene Ontology (GO) knowledgebase is the world’s largest source of information on the functions of genes. This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research.
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications