Filter

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 55 result(s)
Content type(s)
While focused on supporting the scientific community, ATCC activities range widely, from repository-related operations to providing specialized services, conducting in-house R&D and intellectual property management. ATCC serves U.S. and international researchers by characterizing cell lines, bacteria, viruses, fungi and protozoa, as well as developing and evaluating assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities. Our management philosophy emphasizes customer satisfaction, value addition, cost-effective operations and competitive benchmarking for all areas of our enterprise.
The Antimicrobial Peptide Database (APD) was originally created by a graduate student, Zhe Wang, as his master's thesis in the laboratory of Dr. Guangshun Wang. The project was initiated in 2002 and the first version of the database was open to the public in August 2003. It contained 525 peptide entries, which can be searched in multiple ways, including APD ID, peptide name, amino acid sequence, original location, PDB ID, structure, methods for structural determination, peptide length, charge, hydrophobic content, antibacterial, antifungal, antiviral, anticancer, and hemolytic activity. Some results of this bioinformatics tool were reported in the 2004 database paper. The peptide data stored in the APD were gleaned from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in over a decade.
Country
BacMap is a picture atlas of annotated bacterial genomes. It is an interactive visual database containing hundreds of fully labeled, zoomable, and searchable maps of bacterial genomes.
>>>!!!Bacterial (BCSDB) and Plant&Fungal (PFCSDB) carbohydrate structure databases have been merged into a single database, CSDB!!!<<< BCSDB database is aimed at provision of structural, bibliographic, taxonomic and related information on bacterial carbohydrate structures. Two key points of this service are: covering - is above 90% in the scope of bacterial carbohydrates. This means the negative search answer remains valuable scientific information. And consistence - we manually check the data, and aim at hight quality error-free content. The main source of data is a retrospective literature analysis. About 25% of data were imported from CCSD (Carbbank, ceased in 1997, University of Georgia, Athens; structures published before 1995) with subsequent manual curation and approval. Current coverage is displayed in red on the top of the left menu. The time lag between publication of new data and their deposition ~ 1 year. The scope is "bacterial carbohydrates" and covers nearly all structures of this class published up to 2016. Bacterial means that a structure has been found in bacteria or obtained by modification of those found in bacteria. Carohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds, in which at least one residue is a sugar or its derivative.
Content type(s)
Country
Bacteriome.org is a database integrating physical (protein-protein) and functional interactions within the context of an E. coli knowledgebase.
Country
BACTIBASE contains calculated or predicted physicochemical properties of bacteriocins produced by both Gram-positive and Gram-negative bacteria. The information in this database is very easy to extract and allows rapid prediction of relationships structure/function and target organisms of these peptides and therefore better exploitation of their biological activity in both the medical and food sectors.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.
BEI Resources was established by the National Institute of Allergy and Infectious Diseases (NIAID) to provide reagents, tools and information for studying Category A, B, and C priority pathogens, emerging infectious disease agents, non-pathogenic microbes and other microbiological materials of relevance to the research community. BEI Resources acquires authenticates, and produces reagents that scientists need to carry out basic research and develop improved diagnostic tests, vaccines, and therapies. By centralizing these functions within BEI Resources, access to and use of these materials in the scientific community is monitored and quality control of the reagents is assured
The NCMA maintains the largest and most diverse collection of publically available marine algal strains in the world. The algal strains in the collection have been obtained from all over the world, from polar to tropical waters, marine, freshwater, brackish, and hyper-saline environments. New strains (50 - 100 per year) are added largely through the accession of strains deposited by scientists in the community. A stringent accession policy is required to help populate the collection with a diverse range of strains.
Country
The Biofilms Structural Database contains information on different protein structures involved in biofilm formation, development, and virulence.
This is CSDB version 1 merged from Bacterial (BCSDB) and Plant&Fungal (PFCSDB) databases. This database aims at provision of structural, bibliographic, taxonomic, NMR spectroscopic and other information on glycan and glycoconjugate structures of prokaryotic, plant and fungal origin. It has been merged from the Bacterial and Plant&Fungal Carbohydrate Structure Databases (BCSDB+PFCSDB). The key points of this service are: High coverage. The coverage for bacteria (up to 2016) and archaea (up to 2016) is above 80%. Similar coverage for plants and fungi is expected in the future. The database is close to complete up to 1998 for plants, and up to 2006 for fungi. Data quality. High data quality is achieved by manual curation using original publications which is assisted by multiple automatic procedures for error control. Errors present in publications are reported and corrected, when possible. Data from other databases are verified on import. Detailed annotations. Structural data are supplied with extended bibliography, assigned NMR spectra, taxon identification including strains and serogroups, and other information if available in the original publication. Services. CSDB serves as a platform for a number of computational services tuned for glycobiology, such as NMR simulation, automated structure elucidation, taxon clustering, 3D molecular modeling, statistical processing of data etc. Integration. CSDB is cross-linked to other glycoinformatics projects and NCBI databases. The data are exportable in various formats, including most widespread encoding schemes and records using GlycoRDF ontology. Free web access. Users can access the database for free via its web interface (see Help). The main source of data is retrospective literature analysis. About 20% of data were imported from CCSD (Carbbank, University of Georgia, Athens; structures published before 1996) with subsequent manual curation and approval. The current coverage is displayed in red on the top of the left menu. The time lag between the publication of new data and their deposition into CSDB is ca. 1 year. In the scope of bacterial carbohydrates, CSDB covers nearly all structures of this origin published up to 2016. Prokaryotic, plant and fungal means that a glycan was found in the organism(s) belonging to these taxonomic domains or was obtained by modification of those found in them. Carbohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds in which at least one residue is a sugar or its derivative.
Content type(s)
Country
Database for identification and cataloguing of group II introns. All bacterial introns listed are full-length and appear to be functional, based on intron RNA and IEP characteristics. The database names the full-length introns, and provides information on their boundaries, host genes, and secondary structures. In addition, the website provides tools for analysis that may be useful to researchers who encounter group II introns in DNA sequences. Intron data can be downloaded in FASTA format.
Country
DEG hosts records of currently available essential genomic elements, such as protein-coding genes and non-coding RNAs, among bacteria, archaea and eukaryotes. Essential genes in a bacterium constitute a minimal genome, forming a set of functional modules, which play key roles in the emerging field, synthetic biology.
Country
The DSMZ is the most comprehensive biological resource center worldwide. Being one of the world's largest collections, the DSMZ currently comprises more than 73,700 items, including about 31,900 different bacterial and 6,600 fungal strains, 840 human and animal cell lines, 1,500 plant viruses and antisera, 700 bacteriophages and 19,000 different types of bacterial genomic DNA. All biological materials accepted in the DSMZ collection are subject to extensive quality control and physiological and molecular characterization by our central services. In addition, DSMZ provides an extensive documentation and detailed diagnostic information on the biological materials. The unprecedented diversity and quality management of its bioresources render the DSMZ an internationally renowned supplier for science, diagnostic laboratories, national reference centers, as well as industrial partners.
The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with comprehensive information o­n the approximately 700 prokaryote species that are present in the human oral cavity. Approximately 49% are officially named, 17% unnamed (but cultivated) and 34% are known o­nly as uncultivated phylotypes. The HOMD presents a provisional naming scheme for the currently unnamed species so that strain, clone, and probe data from any laboratory can be directly linked to a stably named reference scheme. The HOMD links sequence data with phenotypic, phylogenetic, clinical, and bibliographic information. Genome sequences for oral bacteria determined as part of this project, the Human Microbiome Project, and other sequencing projects are being added to the HOMD as they become available. Genomes for 315 oral taxa (46% of taxa o­n HOMD) are currently available o­n HOMD. The HOMD site offers easy to use tools for viewing all publically available oral bacterial genomes.
Country
eLMSG (eLibrary of Microbial Systematics and Genomics) is a web microbial library that integrates not only taxonomic information, but also genomic information and phenotypic information (including morphology, physiology, biochemistry and enzymology). The taxonomic system of eLMSG is manually curated and composed of all validly and some effectively published taxa. For each taxon, the Latin name, taxon ID (NCBI taxonomy), etymology, rank, lineage, the dates of effective and/or valid publication, feature descriptions, nomenclature type and references for the proposal and emendations during the history of the taxon are presented. Besides these data, the species taxa contain information about 16S rRNA gene and/or genome sequences. All publicly available genome data of each type species including both type and non-type strains were collected, and if needed, re-annotated using the standardized analysis pipeline. Furthermore, pan-genomic data analyses were conducted for species with ≥5 genome sequences available. Finally, for all type species, taxonomically relevant phenotypic data were extracted and curated from literatures, which were further indexed into eLMSG as searchable and analyzable data records. Taken together, eLMSG is a comprehensive web platform for studying mi- crobial systematics and genomics, potentially useful for better understanding microbial taxonomy, natural evolutionary processes and ecological relationships.
Our knowledge of the many life-forms on Earth - of animals, plants, fungi, protists and bacteria - is scattered around the world in books, journals, databases, websites, specimen collections, and in the minds of people everywhere. Imagine what it would mean if this information could be gathered together and made available to everyone – anywhere – at a moment’s notice. This dream is becoming a reality through the Encyclopedia of Life.
This site provides access to complete, annotated genomes from bacteria and archaea (present in the European Nucleotide Archive) through the Ensembl graphical user interface (genome browser). Ensembl Bacteria contains genomes from annotated INSDC records that are loaded into Ensembl multi-species databases, using the INSDC annotation import pipeline.
The Ensembl genome annotation system, developed jointly by the EBI and the Wellcome Trust Sanger Institute, has been used for the annotation, analysis and display of vertebrate genomes since 2000. Since 2009, the Ensembl site has been complemented by the creation of five new sites, for bacteria, protists, fungi, plants and invertebrate metazoa, enabling users to use a single collection of (interactive and programatic) interfaces for accessing and comparing genome-scale data from species of scientific interest from across the taxonomy. In each domain, we aim to bring the integrative power of Ensembl tools for comparative analysis, data mining and visualisation across genomes of scientific interest, working in collaboration with scientific communities to improve and deepen genome annotation and interpretation.
EnsemblPlants is a genome-centric portal for plant species. Ensembl Plants is developed in coordination with other plant genomics and bioinformatics groups via the EBI's role in the transPLANT consortium.
GenBase is a genetic sequence database that accepts user submissions (mRNA, genomic DNAs, ncRNA, or small genomes such as organelles, viruses, plasmids, phages from any organism) and integrates data from INSDC.