Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 63 result(s)
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
Country
The Human Genetic Variation Database (HGVD) aims to provide a central resource to archive and display Japanese genetic variation and association between the variation and transcription level of genes. The database currently contains genetic variations determined by exome sequencing of 1,208 individuals and genotyping data of common variations obtained from a cohort of 3,248 individuals.
<<<!!!<<< NCBI announced plans to retire the Clone DB web interface. Pursuant to this retirement, starting on May 27, 2019, all web pages associated with Clone DB and CloneFinder will redirect to this blog post https://ncbiinsights.ncbi.nlm.nih.gov/?s=clone+db. Links to Clone DB from the NCBI home page will also be going away. >>>!!!>>>
Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, GDAC Firehose now sits atop terabytes of analysis-ready TCGA data and reliably executes thousands of pipelines per month. More information: https://broadinstitute.atlassian.net/wiki/spaces/GDAC/
Country
<<<!!!<<< The repository is no longer available. >>>!!!>>> Indian Genetic Disease Database (IGDD) is an initiative of CSIR Indian Institute of Chemical Biology. It is supported by Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT) of India. The Indian people represent one-sixth of the world population and consists of a ethnically, geographically, and genetically diverse population. In some communities the ratio of genetic disorder is relatively high due to consanguineous marriage practiced in the community. This database has been created to keep track of mutations in the causal genes for genetic diseases common in India and help the physicians, geneticists, and other professionals retrieve and use the information for the benefit of the public. The database includes scientific information about these genetic diseases and disabilities, but also statistical information about these diseases in today's society. Data is categorized by body part affected and then by title of the disease.
Human Proteinpedia is a community portal for sharing and integration of human protein data. This is a joint project between Pandey at Johns Hopkins University, and Institute of Bioinformatics, Bangalore. This portal allows research laboratories around the world to contribute and maintain protein annotations. Human Protein Reference Database (HPRD) integrates data, that is deposited in Human Proteinpedia along with the existing literature curated information in the context of an individual protein. All the public data contributed to Human Proteinpedia can be queried, viewed and downloaded. Data pertaining to post-translational modifications, protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships may be deposited.
Country
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes.For both Chromatin- immunoprecipation Transcription Factors and Histone modifications. Sequence files and the associated probability files are also provided.
AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals’ transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated.
>>> !!!!! The Cell Centered Database is no longer on serice. It has been merged with "Cell image library": https://www.re3data.org/repository/r3d100000023 !!!!! <<<<
The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The Data Coordinating Center (DCC) is the central provider of TCGA data. The DCC standardizes data formats and validates submitted data.
Country
The Cystic Fibrosis Mutation Database (CFTR1) was initiated by the Cystic Fibrosis Genetic Analysis Consortium in 1989 to increase and facilitate communications among CF researchers, and is maintained by the Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. The specific aim of the database is to provide up to date information about individual mutations in the CFTR gene. In a major upgrade in 2010, all known CFTR mutations and sequence variants have been converted to the standard nomenclature recommended by the Human Genome Variation Society.
The Bacterial and Viral Bioinformatics Resource Center (BV-BRC) is an information system designed to support research on bacterial and viral infectious diseases. BV-BRC combines two long-running BRCs: PATRIC, the bacterial system, and IRD/ViPR, the viral systems.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.
<<<!!!<<< The repository is no longer available - Data previously on the site are now available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final Archive. >>>!!!>>> The dbMHC database provides an open, publicly accessible platform for DNA and clinical data related to the human Major Histocompatibility Complex (MHC). The dbMHC provides access to human leukocyte antigen (HLA) sequences, HLA allele and haplotype frequencies, and clinical datasets.
Country
SILVA is a comprehensive, quality-controlled web resource for up-to-date aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains alongside supplementary online services. In addition to data products, SILVA provides various online tools such as alignment and classification, phylogenetic tree calculation and viewer, probe/primer matching, and an amplicon analysis pipeline. With every full release a curated guide tree is provided that contains the latest taxonomy and nomenclature based on multiple references. SILVA is an ELIXIR Core Data Resource.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
The Fungal Genetics Stock Center has preserved and distributed strains of genetically characterized fungi since 1960. The collection includes over 20,000 accessioned strains of classical and genetically engineered mutants of key model, human, and plant pathogenic fungi. These materials are distributed as living stocks to researchers around the world.
>>>>!!!!<<<< The Cancer Genomics Hub mission is now completed. The Cancer Genomics Hub was established in August 2011 to provide a repository to The Cancer Genome Atlas, the childhood cancer initiative Therapeutically Applicable Research to Generate Effective Treatments and the Cancer Genome Characterization Initiative. CGHub rapidly grew to be the largest database of cancer genomes in the world, storing more than 2.5 petabytes of data and serving downloads of nearly 3 petabytes per month. As the central repository for the foundational genome files, CGHub streamlined team science efforts as data became as easy to obtain as downloading from a hard drive. The convenient access to Big Data, and the collaborations that CGHub made possible, are now essential to cancer research. That work continues at the NCI's Genomic Data Commons. All files previously stored at CGHub can be found there. The Website for the Genomic Data Commons is here: https://gdc.nci.nih.gov/ >>>>!!!!<<<< The Cancer Genomics Hub (CGHub) is a secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. Access to CGHub Data: All researchers using CGHub must meet the access and use criteria established by the National Institutes of Health (NIH) to ensure the privacy, security, and integrity of participant data. CGHub also hosts some publicly available data, in particular data from the Cancer Cell Line Encyclopedia. All metadata is publicly available and the catalog of metadata and associated BAMs can be explored using the CGHub Data Browser.