Filter

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 61 result(s)
Country
FANTOM stands for 'Functional Annotation of the Mammalian Genome' and is the name of an international research consortium organized by the RIKEN Omics Science Center. The FANTOM5 project aims to build a full understanding of transcriptional regulation in a human system by generating transcriptional regulatory networks that define every human cell type.
Country
<<<!!!<<< Genome data generated by BC Genome Sciences Centre is no longer available through this site as it is regularly deposited into controlled data repositories such as the European Genome Phenome Archive (EGA); ICGC (International Cancer Genome Consortium) and the Genome Data Commons (GDC) >>>!!!>>> Mapping, copy number analysis, sequence and gene expression data generated by the High Resolution Analysis of Follicular Lymphoma Genomes project. The data will be available for 24 patients with follicular lymphoma. All data will be made as widely and freely available as possible while safeguarding the privacy of participants, and protecting confidential and proprietary data.The data from this project will be submitted to public genomic data sources. These sources will be listed on this web site as the data becomes available in these external data sources.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
Country
GABI, acronym for "Genomanalyse im biologischen System Pflanze", is the name of a large collaborative network of different plant genomic research projects. Plant data from different ‘omics’ fronts representing more than 10 different model or crop species are integrated in GabiPD.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
GENCODE is a scientific project in genome research and part of the ENCODE (ENCyclopedia Of DNA Elements) scale-up project. The GENCODE consortium was initially formed as part of the pilot phase of the ENCODE project to identify and map all protein-coding genes within the ENCODE regions (approx. 1% of Human genome). Given the initial success of the project, GENCODE now aims to build an “Encyclopedia of genes and genes variants” by identifying all gene features in the human and mouse genome using a combination of computational analysis, manual annotation, and experimental validation, and annotating all evidence-based gene features in the entire human genome at a high accuracy.
The mission of the GO Consortium is to develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life. The Gene Ontology (GO) knowledgebase is the world’s largest source of information on the functions of genes. This knowledge is both human-readable and machine-readable, and is a foundation for computational analysis of large-scale molecular biology and genetics experiments in biomedical research.
Country
<<<!!!<<< 2019-12-23: the repository is offline >>>!!!>>> Introduction of genome-scale metabolic network: The completion of genome sequencing and subsequent functional annotation for a great number of species enables the reconstruction of genome-scale metabolic networks. These networks, together with in silico network analysis methods such as the constraint based methods (CBM) and graph theory methods, can provide us systems level understanding of cellular metabolism. Further more, they can be applied to many predictions of real biological application such as: gene essentiality analysis, drug target discovery and metabolic engineering
GOLD is currently the largest repository for genome project information world-wide. The accurate and efficient genome project tracking is a vital criterion for launching new genome sequencing projects, and for avoiding significant overlap between various sequencing efforts and centers.
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.
!!! >>> the repository is offline >>> !!! GOBASE is a taxonomically broad organelle genome database that organizes and integrates diverse data related to mitochondria and chloroplasts. GOBASE is currently expanding to include information on representative bacteria that are thought to be specifically related to the bacterial ancestors of mitochondria and chloroplasts
Gramene is a platform for comparative genomic analysis of agriculturally important grasses, including maize, rice, sorghum, wheat and barley. Relationships between cereals are queried and displayed using controlled vocabularies (Gene, Plant, Trait, Environment, and Gramene Taxonomy) and web-based displays, including the Genes and Quantitative Trait Loci (QTL) modules.
This database serves forest tree scientists by providing online access to hardwood tree genomic and genetic data, including assembled reference genomes, transcriptomes, and genetic mapping information. The web site also provides access to tools for mining and visualization of these data sets, including BLAST for comparing sequences, Jbrowse for browsing genomes, Apollo for community annotation and Expression Analysis to build gene expression heatmaps.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> A human interactome map. The sequencing of the human genome has provided a surprisingly small number of genes, indicating that the complex organization of life is not reflected in the gene number but, rather, in the gene products – that is, in the proteins. These macromolecules regulate the vast majority of cellular processes by their ability to communicate with each other and to assemble into larger functional units. Therefore, the systematic analysis of protein-protein interactions is fundamental for the understanding of protein function, cellular processes and, ultimately, the complexity of life. Moreover, interactome maps are particularly needed to link new proteins to disease pathways and the identification of novel drug targets.
IMGT/GENE-DB is the IMGT genome database for IG and TR genes from human, mouse and other vertebrates. IMGT/GENE-DB provides a full characterization of the genes and of their alleles: IMGT gene name and definition, chromosomal localization, number of alleles, and for each allele, the IMGT allele functionality, and the IMGT reference sequences and other sequences from the literature. IMGT/GENE-DB allele reference sequences are available in FASTA format (nucleotide and amino acid sequences with IMGT gaps according to the IMGT unique numbering, or without gaps).
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
MycoCosm, the DOE JGI’s web-based fungal genomics resource, which integrates fungal genomics data and analytical tools for fungal biologists. It provides navigation through sequenced genomes, genome analysis in context of comparative genomics and genome-centric view. MycoCosm promotes user community participation in data submission, annotation and analysis.
The Maize Genetics and Genomics Database focuses on collecting data related to the crop plant and model organism Zea mays. The project's goals are to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models. MaizeGDB also aims to make the Maize Newsletter available, and provide support services to the community of maize researchers. MaizeGDB is working with the Schnable lab, the Panzea project, The Genome Reference Consortium, and iPlant Collaborative to create a plan for archiving, dessiminating, visualizing, and analyzing diversity data. MMaizeGDB is short for Maize Genetics/Genomics Database. It is a USDA/ARS funded project to integrate the data found in MaizeDB and ZmDB into a single schema, develop an effective interface to access this data, and develop additional tools to make data analysis easier. Our goal in the long term is a true next-generation online maize database.aize genetics and genomics database.
Country
The National Microbial Data Center (NMDC) is jointly constructed by the Institute of Microbiology of the Chinese Academy of Sciences (IMS), the Institute of Oceanography of the Chinese Academy of Sciences, the Institute of Infectious Diseases of the Chinese Center for Disease Control and Prevention, the Institute of Plant Physiology and Ecology of the Chinese Academy of Sciences, and the Computer Network Information Centre of the Chinese Academy of Sciences. The General Office of the Chinese Academy of Sciences is the parent department. The data resources covering the whole life cycle of microbiological research, including microbiological resources, microbiological and cross-technological methods, research processes and engineering, microbiomics, microbiological technologies, as well as microbiological literature, patents, experts and results. The Centre focuses on promoting the convergence and integration of scientific and technological resources in the field of microbiology to the national platform, strengthening the development, application and analysis of microbiological resources, enhancing the effective use of microbiological resources and the ability to support scientific and technological innovation, and providing high-quality scientific and technological resource sharing services for scientific research, technological progress and social development.
The long-term vision of the NMDC is to support microbiome data exploration through a sustainable data discovery platform that promotes open science and shared-ownership across a broad and diverse community of researchers, funders, publishers, and societies. The NMDC is developing a distributed data infrastructure while engaging with the research community to enable multidisciplinary and FAIR microbiome data.
<<<!!!<<< Effective May 2024, NCBI's Genome resource will no longer be available. NCBI Genome data can now be found on the NCBI Datasets taxonomy pages. https://www.re3data.org/repository/r3d100014298 >>>!!!>>> The Genome database contains annotations and analysis of eukaryotic and prokaryotic genomes, as well as tools that allow users to compare genomes and gene sequences from humans, microbes, plants, viruses and organelles. Users can browse by organism, and view genome maps and protein clusters.